- Browse by Author
Browsing by Author "Seyyed-Kalantari, Laleh"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item AI recognition of patient race in medical imaging: a modelling study(Elsevier, 2022-06) Gichoya, Judy Wawira; Banerjee, Imon; Bhimireddy, Ananth Reddy; Burns, John L.; Celi, Leo Anthony; Chen, Li-Ching; Correa, Ramon; Dullerud, Natalie; Ghassemi, Marzyeh; Huang, Shih-Cheng; Kuo, Po-Chih; Lungren, Matthew P.; Palmer, Lyle J.; Price, Brandon J.; Purkayastha, Saptarshi; Pyrros, Ayis T.; Oakden-Rayner, Lauren; Okechukwu, Chima; Seyyed-Kalantari, Laleh; Trivedi, Hari; Wang, Ryan; Zaiman, Zachary; Zhang, Haoran; BioHealth Informatics, School of Informatics and ComputingBackground Previous studies in medical imaging have shown disparate abilities of artificial intelligence (AI) to detect a person's race, yet there is no known correlation for race on medical imaging that would be obvious to human experts when interpreting the images. We aimed to conduct a comprehensive evaluation of the ability of AI to recognise a patient's racial identity from medical images. Methods Using private (Emory CXR, Emory Chest CT, Emory Cervical Spine, and Emory Mammogram) and public (MIMIC-CXR, CheXpert, National Lung Cancer Screening Trial, RSNA Pulmonary Embolism CT, and Digital Hand Atlas) datasets, we evaluated, first, performance quantification of deep learning models in detecting race from medical images, including the ability of these models to generalise to external environments and across multiple imaging modalities. Second, we assessed possible confounding of anatomic and phenotypic population features by assessing the ability of these hypothesised confounders to detect race in isolation using regression models, and by re-evaluating the deep learning models by testing them on datasets stratified by these hypothesised confounding variables. Last, by exploring the effect of image corruptions on model performance, we investigated the underlying mechanism by which AI models can recognise race. Findings In our study, we show that standard AI deep learning models can be trained to predict race from medical images with high performance across multiple imaging modalities, which was sustained under external validation conditions (x-ray imaging [area under the receiver operating characteristics curve (AUC) range 0·91-0·99], CT chest imaging [0·87-0·96], and mammography [0·81]). We also showed that this detection is not due to proxies or imaging-related surrogate covariates for race (eg, performance of possible confounders: body-mass index [AUC 0·55], disease distribution [0·61], and breast density [0·61]). Finally, we provide evidence to show that the ability of AI deep learning models persisted over all anatomical regions and frequency spectrums of the images, suggesting the efforts to control this behaviour when it is undesirable will be challenging and demand further study. Interpretation The results from our study emphasise that the ability of AI deep learning models to predict self-reported race is itself not the issue of importance. However, our finding that AI can accurately predict self-reported race, even from corrupted, cropped, and noised medical images, often when clinical experts cannot, creates an enormous risk for all model deployments in medical imaging. Funding National Institute of Biomedical Imaging and Bioengineering, MIDRC grant of National Institutes of Health, US National Science Foundation, National Library of Medicine of the National Institutes of Health, and Taiwan Ministry of Science and Technology.Item Reading Race: AI Recognises Patient's Racial Identity In Medical Images(arXiv, 2021) Banerjee, Imon; Bhimireddy, Ananth Reddy; Burns, John L.; Celi, Leo Anthony; Chen, Li-Ching; Correa, Ramon; Dullerud, Natalie; Ghassemi, Marzyeh; Huang, Shih-Cheng; Kuo, Po-Chih; Lungren, Matthew P.; Palmer, Lyle; Price, Brandon J.; Purkayastha, Saptarshi; Pyrros, Ayis; Oakden-Rayner, Luke; Okechukwu, Chima; Seyyed-Kalantari, Laleh; Trivedi, Hari; Wang, Ryan; Zaiman, Zachary; Zhang, Haoran; Gichoya, Judy W.; BioHealth Informatics, School of Informatics and ComputingBackground: In medical imaging, prior studies have demonstrated disparate AI performance by race, yet there is no known correlation for race on medical imaging that would be obvious to the human expert interpreting the images. Methods: Using private and public datasets we evaluate: A) performance quantification of deep learning models to detect race from medical images, including the ability of these models to generalize to external environments and across multiple imaging modalities, B) assessment of possible confounding anatomic and phenotype population features, such as disease distribution and body habitus as predictors of race, and C) investigation into the underlying mechanism by which AI models can recognize race. Findings: Standard deep learning models can be trained to predict race from medical images with high performance across multiple imaging modalities. Our findings hold under external validation conditions, as well as when models are optimized to perform clinically motivated tasks. We demonstrate this detection is not due to trivial proxies or imaging-related surrogate covariates for race, such as underlying disease distribution. Finally, we show that performance persists over all anatomical regions and frequency spectrum of the images suggesting that mitigation efforts will be challenging and demand further study. Interpretation: We emphasize that model ability to predict self-reported race is itself not the issue of importance. However, our findings that AI can trivially predict self-reported race -- even from corrupted, cropped, and noised medical images -- in a setting where clinical experts cannot, creates an enormous risk for all model deployments in medical imaging: if an AI model secretly used its knowledge of self-reported race to misclassify all Black patients, radiologists would not be able to tell using the same data the model has access to.Item “Shortcuts” Causing Bias in Radiology Artificial Intelligence: Causes, Evaluation, and Mitigation(Elsevier, 2023) Banerjee, Imon; Bhattacharjee, Kamanasish; Burns, John L.; Trivedi, Hari; Purkayastha, Saptarshi; Seyyed-Kalantari, Laleh; Patel, Bhavik N.; Rakesh, Shiradkar; Judy, Gichoya; Radiology and Imaging Sciences, School of MedicineDespite the expert-level performance of artificial intelligence (AI) models for various medical imaging tasks, real-world performance failures with disparate outputs for various subgroups limit the usefulness of AI in improving patients' lives. Many definitions of fairness have been proposed, with discussions of various tensions that arise in the choice of an appropriate metric to use to evaluate bias; for example, should one aim for individual or group fairness? One central observation is that AI models apply "shortcut learning" whereby spurious features (such as chest tubes and portable radiographic markers on intensive care unit chest radiography) on medical images are used for prediction instead of identifying true pathology. Moreover, AI has been shown to have a remarkable ability to detect protected attributes of age, sex, and race, while the same models demonstrate bias against historically underserved subgroups of age, sex, and race in disease diagnosis. Therefore, an AI model may take shortcut predictions from these correlations and subsequently generate an outcome that is biased toward certain subgroups even when protected attributes are not explicitly used as inputs into the model. As a result, these subgroups became nonprivileged subgroups. In this review, the authors discuss the various types of bias from shortcut learning that may occur at different phases of AI model development, including data bias, modeling bias, and inference bias. The authors thereafter summarize various tool kits that can be used to evaluate and mitigate bias and note that these have largely been applied to nonmedical domains and require more evaluation for medical AI. The authors then summarize current techniques for mitigating bias from preprocessing (data-centric solutions) and during model development (computational solutions) and postprocessing (recalibration of learning). Ongoing legal changes where the use of a biased model will be penalized highlight the necessity of understanding, detecting, and mitigating biases from shortcut learning and will require diverse research teams looking at the whole AI pipeline.