- Browse by Author
Browsing by Author "Seitz, Clayton"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item DNA damage reduces heterogeneity and coherence of chromatin motions(National Academy of Science, 2022) Locatelli, Maëlle; Lawrimore, Josh; Lin, Hua; Sanaullah, Sarvath; Seitz, Clayton; Segall, Dave; Kefer, Paul; Moreno, Naike Salvador; Lietz, Benton; Anderson, Rebecca; Holmes, Julia; Yuan, Chongli; Holzwarth, George; Bloom, Kerry S.; Liu, Jing; Bonin, Keith; Vidi, Pierre-Alexandre; Physics, School of ScienceChromatin motions depend on and may regulate genome functions, in particular the DNA damage response. In yeast, DNA double-strand breaks (DSBs) globally increase chromatin diffusion, whereas in higher eukaryotes the impact of DSBs on chromatin dynamics is more nuanced. We mapped the motions of chromatin microdomains in mammalian cells using diffractive optics and photoactivatable chromatin probes and found a high level of spatial heterogeneity. DNA damage reduces heterogeneity and imposes spatially defined shifts in motions: Distal to DNA breaks, chromatin motions are globally reduced, whereas chromatin retains higher mobility at break sites. These effects are driven by context-dependent changes in chromatin compaction. Photoactivated lattices of chromatin microdomains are ideal to quantify microscale coupling of chromatin motion. We measured correlation distances up to 2 µm in the cell nucleus, spanning chromosome territories, and speculate that this correlation distance between chromatin microdomains corresponds to the physical separation of A and B compartments identified in chromosome conformation capture experiments. After DNA damage, chromatin motions become less correlated, a phenomenon driven by phase separation at DSBs. Our data indicate tight spatial control of chromatin motions after genomic insults, which may facilitate repair at the break sites and prevent deleterious contacts of DSBs, thereby reducing the risk of genomic rearrangements.Item A guide for single-particle chromatin tracking in live cell nuclei(Wiley, 2022) Zhang, Mengdi; Seitz, Clayton; Chang, Garrick; Iqbal, Fadil; Lin, Hua; Liu, Jing; Physics, School of ScienceThe emergence of labeling strategies and live cell imaging methods enables the imaging of chromatin in living cells at single digit nanometer resolution as well as milliseconds temporal resolution. These technical breakthroughs revolutionize our understanding of chromatin structure, dynamics and functions. Single molecule tracking algorithms are usually preferred to quantify the movement of these intranucleus elements to interpret the spatiotemporal evolution of the chromatin. In this review, we will first summarize the fluorescent labeling strategy of chromatin in live cells which will be followed by a systematic comparison of live cell imaging instrumentation. With the proper microscope, we will discuss the image analysis pipelines to extract the biophysical properties of the chromatin. Finally, we expect to give practical suggestions to broad biologists on how to select methods and link to the model properly according to different investigation purposes. This article is protected by copyright. All rights reserved.Item Impact of Proinflammatory Cytokines on Alternative Splicing Patterns in Human Islets(American Diabetes Association, 2021) Wu, Wenting; Syed, Farooq; Simpson, Edward; Lee, Chih-Chun; Liu, Jing; Chang, Garrick; Dong, Chuanpeng; Seitz, Clayton; Eizirik, Decio L.; Mirmira, Raghavendra G.; Liu, Yunlong; Evans-Molina, Carmella; Medical and Molecular Genetics, School of MedicineAlternative splicing (AS) within the β-cell has been proposed as one potential pathway that may exacerbate autoimmunity and unveil novel immunogenic epitopes in type 1 diabetes (T1D). We used a computational strategy to prioritize pathogenic splicing events in human islets treated with interleukin-1β plus interferon-γ as an ex vivo model of T1D and coupled this analysis with a k-mer–based approach to predict RNA-binding proteins involved in AS. In total, 969 AS events were identified in cytokine-treated islets, with a majority (44.8%) involving a skipped exon. ExonImpact identified 129 events predicted to affect protein structure. AS occurred with high frequency in MHC class II–related mRNAs, and targeted quantitative PCR validated reduced inclusion of exon 5 in the MHC class II gene HLA-DMB. Single-molecule RNA fluorescence in situ hybridization confirmed increased HLA-DMB splicing in β-cells from human donors with established T1D and autoantibody positivity. Serine/arginine-rich splicing factor 2 was implicated in 37.2% of potentially pathogenic events, including exon 5 exclusion in HLA-DMB. Together, these data suggest that dynamic control of AS plays a role in the β-cell response to inflammatory signals during T1D evolution.