- Browse by Author
Browsing by Author "Schroeder-Carter, Lindsay M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Mechanisms for Alternaria alternata Function in the Skin During Induction of Peanut Allergy in Neonatal Mice With Skin Barrier Mutations(Frontiers, 2021-09) Buelow, Lauren M.; Hoji, Akihiko; Tat, Kiet; Schroeder-Carter, Lindsay M.; Carroll, Daniela J.; Cook-Mills, Joan M.; Pediatrics, School of MedicineNeonatal mice with heterozygous mutations in genes encoding the skin barrier proteins filaggrin and mattrin (flaky tail mice [FT+/−]) exhibit oral peanut-induced anaphylaxis after skin sensitization. As we have previously reported, sensitization in this model is achieved via skin co- exposure to the environmental allergen Alternaria alternata (Alt), peanut extract (PNE), and detergent. However, the function of Alt in initiation of peanut allergy in this model is little understood. The purpose of this study was to investigate candidate cytokines induced by Alt in the skin and determine the role of these cytokines in the development of food allergy, namely oncostatin M (Osm), amphiregulin (Areg), and IL-33. RT-qPCR analyses demonstrated that skin of FT+/− neonates expressed Il33 and Osm following Alt or Alt/PNE but not PNE exposure. By contrast, expression of Areg was induced by either Alt, PNE, or Alt/PNE sensitization in FT+/− neonates. In scRNAseq analyses, Osm, Areg, and Il33 were expressed by several cell types, including a keratinocyte cluster that was expanded in the skin of Alt/PNE-exposed FT+/− pups as compared to Alt/PNE-exposed WT pups. Areg and OSM were required for oral PNE-induced anaphylaxis since anaphylaxis was inhibited by administration of neutralizing anti-Areg or anti-OSM antibodies prior to each skin sensitization with Alt/PNE. It was then determined if intradermal injection of recombinant IL33 (rIL33), rAreg, or rOSM in the skin could substitute for Alt during skin sensitization to PNE. PNE skin sensitization with intradermal rIL33 was sufficient for oral PNE-induced anaphylaxis, whereas skin sensitization with intradermal rAreg or rOSM during skin exposure to PNE was not sufficient for anaphylaxis to oral PNE challenge. Based on these studies a pathway for IL33, Areg and OSM in Alt/PNE sensitized FT+/− skin was defined for IgE induction and anaphylaxis. Alt stimulated two pathways, an IL33 pathway and a pathway involving OSM and Areg. These two pathways acted in concert with PNE to induce food allergy in pups with skin barrier mutations.Item β-Glucosylceramide From Allergic Mothers Enhances Offspring Responsiveness to Allergen(Frontiers Media, 2021-02) Walker, Matthew T.; Ferrie, Ryan P.; Hoji, Aki; Schroeder-Carter, Lindsay M.; Cohen, Jacob D.; Schnaar, Ronald L.; Cook-Mills, Joan M.; Pediatrics, School of MedicineIn animals and humans, offspring of allergic mothers have increased responsiveness to allergen and the allergen-specificity of the offspring can be different than that of the mother. In our preclinical models, the mother's allergic responses influence development of the fetus and offspring by elevating numbers of cells in dendritic cell subsets. A major question is the identity of maternal factors of allergic mothers that alter offspring development of responsiveness to allergen. Lipids are altered during allergic responses and lipids are transported to the fetus for growth and formation of fetal membranes. We hypothesized that pro-inflammatory lipids, that are elevated in allergic mothers, are transported to the fetus and regulate fetal immune development. We demonstrate in this report that there was a significant 2-fold increase in β-glucosylceramides (βGlcCer) in allergic mothers, the fetal liver and her offspring. The βGlcCer were transported from mother's plasma, across the placenta, to the fetus and in breastmilk to the offspring. Administration of βGlcCer to non-allergic mothers was sufficient for offspring responses to allergen. Importantly, maternal administration of a clinically relevant pharmacological inhibitor of βGlcCer synthase returned βGlcCer to normal levels in the allergic mothers and her offspring and blocked the offspring increase in dendritic cell subsets and offspring allergen responsiveness. In summary, allergic mothers had increased βGlcCer that was transported to offspring and mediated increases in offspring DCs and responsiveness to allergen. These data have a significant impact on our understanding of mechanisms for development of allergies in offspring of allergic mothers and have the potential to lead to novel interventions that significantly impact risk for allergic disease early in life.