- Browse by Author
Browsing by Author "Schorr, Christopher"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Deficits in Our Understanding of Natural Killer Cell Development in Mouse and Human(Wolters Kluwer, 2023) Schorr, Christopher; Krishnan, Maya Shraddha; Capitano, Maegan; Microbiology and Immunology, School of MedicinePurpose of review: Natural killer (NK) cells are a type of immune cell that play a crucial role in the defense against cancer and viral infections. The development and maturation of NK cells is a complex process, involving the coordination of various signaling pathways, transcription factors, and epigenetic modifications. In recent years, there has been a growing interest in studying the development of NK cells. In this review, we discuss the field's current understanding of the journey a hematopoietic stem cell takes to become a fully mature NK cell and detail the sequential steps and regulation of conventional NK leukopoiesis in both mice and humans. Recent findings: Recent studies have highlighted the significance of defining NK development stages. Several groups report differing schema to identify NK cell development and new findings demonstrate novel ways to classify NK cells. Further investigation of NK cell biology and development is needed, as multiomic analysis reveals a large diversity in NK cell development pathways. Summary: We provide an overview of current knowledge on the development of NK cells, including the various stages of differentiation, the regulation of development, and the maturation of NK cells in both mice and humans. A deeper understanding of NK cell development has the potential to provide insights into new therapeutic strategies for the treatment of diseases such as cancer and viral infections.Item Tailoring CAR T cell technology for T cell leukemia(Elsevier, 2023) Schorr, Christopher; Perna, Fabiana; Medicine, School of MedicineItem Targets for chimeric antigen receptor T-cell therapy of acute myeloid leukemia(Frontiers Media, 2022-12-20) Schorr, Christopher; Perna, Fabiana; Medicine, School of MedicineAcute Myeloid Leukemia (AML) is an aggressive myeloid malignancy associated with high mortality rates (less than 30% 5-year survival). Despite advances in our understanding of the molecular mechanisms underpinning leukemogenesis, standard-of-care therapeutic approaches have not changed over the last couple of decades. Chimeric Antigen Receptor (CAR) T-cell therapy targeting CD19 has shown remarkable clinical outcomes for patients with acute lymphoblastic leukemia (ALL) and is now an FDA-approved therapy. Targeting of myeloid malignancies that are CD19-negative with this promising technology remains challenging largely due to lack of alternate target antigens, complex clonal heterogeneity, and the increased recognition of an immunosuppressive bone marrow. We carefully reviewed a comprehensive list of AML targets currently being used in both proof-of-concept pre-clinical and experimental clinical settings. We analyzed the expression profile of these molecules in leukemic as well normal tissues using reliable protein databases and data reported in the literature and we provide an updated overview of the current clinical trials with CAR T-cells in AML. Our study represents a state-of-art review of the field and serves as a potential guide for selecting known AML-associated targets for adoptive cellular therapies.Item Thrombotic Events Are Unusual Toxicities of Chimeric Antigen Receptor T-Cell Therapies(MDPI, 2023-05-06) Schorr, Christopher; Forindez, Jorge; Espinoza-Gutarra, Manuel; Mehta, Rakesh; Grover, Natalie; Perna, Fabiana; Medicine, School of MedicineChimeric antigen receptor (CAR) T-cell therapy has greatly transformed the treatment and prognosis of B-cell hematological malignancies. As CAR T-cell therapy continues to be more readily adopted and indications increase, the field’s recognition of emerging toxicities will continue to grow. Among the adverse events associated with CAR T-cell therapy, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity (ICANS) are the most common toxicities, while thrombotic events represent an under-reported, life-endangering complication. To determine thrombosis incidence post CAR T-cell therapy, we performed a multi-center, retrospective study on CAR T-cell therapy adult patients (N = 140) from Indiana University Simon Cancer Center and the University of North Carolina Medical Center treated from 2017 to 2022 for relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL, N = 3), diffuse large B-cell lymphoma (DLBCL, N = 92), follicular lymphoma (FL, N = 9), mantle cell lymphoma (MCL, N = 2), and multiple myeloma (MM, N = 34). We report 10 (7.14%) thrombotic events related to CAR T-cell therapy (DLBCL: N = 8, FL: N = 1, MM: N = 1) including 9 primary venous events and 1 arterial event that occurred with median time of 23.5 days post CAR T-cell infusion. In search of parameters associated with such events, we performed multivariate analyses of coagulation parameters (i.e., PT, PTT, and D-Dimer), scoring for adverse events (Padua Score and ISTH DIC Score) and grading for CAR T-cell toxicity severity (CRS grade and ICANS grade) and found that D-Dimer peak elevation and ICANS grade were significantly associated with post-CAR T-cell infusion thrombosis. While the pathophysiology of CAR T-cell associated coagulopathy remains unknown, our study serves to develop awareness of these emerging and unusual complications.