- Browse by Author
Browsing by Author "Schork, Nicholas"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Detecting significant genotype-phenotype association rules in bipolar disorder: market research meets complex genetics(SpringerOpen, 2018-11-11) Breuer, René; Mattheisen, Manuel; Frank, Josef; Krumm, Bertram; Treutlein, Jens; Kassem, Layla; Strohmaier, Jana; Herms, Stefan; Mühleisen, Thomas W.; Degenhardt, Franziska; Cichon, Sven; Nöthen, Markus M.; Karypis, George; Kelsoe, John; Greenwood, Tiffany; Nievergelt, Caroline; Shilling, Paul; Shekhtman, Tatyana; Edenberg, Howard; Craig, David; Szelinger, Szabolcs; Nurnberger, John; Gershon, Elliot; Alliey‑Rodriguez, Ney; Zandi, Peter; Goes, Fernando; Schork, Nicholas; Smith, Erin; Koller, Daniel; Zhang, Peng; Badner, Judith; Berrettini, Wade; Bloss, Cinnamon; Byerley, William; Coryell, William; Foroud, Tatiana; Guo, Yirin; Hipolito, Maria; Keating, Brendan; Lawson, William; Liu, Chunyu; Mahon, Pamela; McInnis, Melvin; Murray, Sarah; Nwulia, Evaristus; Potash, James; Rice, John; Scheftner, William; Zöllner, Sebastian; McMahon, Francis J.; Rietschel, Marcella; Schulze, Thomas G.; Biochemistry and Molecular Biology, School of MedicineBACKGROUND: Disentangling the etiology of common, complex diseases is a major challenge in genetic research. For bipolar disorder (BD), several genome-wide association studies (GWAS) have been performed. Similar to other complex disorders, major breakthroughs in explaining the high heritability of BD through GWAS have remained elusive. To overcome this dilemma, genetic research into BD, has embraced a variety of strategies such as the formation of large consortia to increase sample size and sequencing approaches. Here we advocate a complementary approach making use of already existing GWAS data: a novel data mining procedure to identify yet undetected genotype-phenotype relationships. We adapted association rule mining, a data mining technique traditionally used in retail market research, to identify frequent and characteristic genotype patterns showing strong associations to phenotype clusters. We applied this strategy to three independent GWAS datasets from 2835 phenotypically characterized patients with BD. In a discovery step, 20,882 candidate association rules were extracted. RESULTS: Two of these rules-one associated with eating disorder and the other with anxiety-remained significant in an independent dataset after robust correction for multiple testing. Both showed considerable effect sizes (odds ratio ~ 3.4 and 3.0, respectively) and support previously reported molecular biological findings. CONCLUSION: Our approach detected novel specific genotype-phenotype relationships in BD that were missed by standard analyses like GWAS. While we developed and applied our method within the context of BD gene discovery, it may facilitate identifying highly specific genotype-phenotype relationships in subsets of genome-wide data sets of other complex phenotype with similar epidemiological properties and challenges to gene discovery efforts.Item Large-scale genomics unveil polygenic architecture of human cortical surface area(Nature Publishing Group, 2015-07-20) Chen, Chi-Hua; Peng, Qian; Schork, Andrew J.; Lo, Min-Tzu; Fan, Chun-Chieh; Wang, Yunpeng; Desikan, Rahul S.; Bettella, Francesco; Hagler, Donald J.; Westlye, Lars T.; Kremen, William S.; Jernigan, Terry L.; Hellard, Stephanie Le; Steen, Vidar M.; Espeseth, Thomas; Huentelman, Matt; Håberg, Asta K.; Agartz, Ingrid; Djurovic, Srdjan; Andreassen, Ole A.; Schork, Nicholas; Dale, Anders M.; Department of Radiology and Imaging Sciences, IU School of MedicineLittle is known about how genetic variation contributes to neuroanatomical variability, and whether particular genomic regions comprising genes or evolutionarily conserved elements are enriched for effects that influence brain morphology. Here, we examine brain imaging and single-nucleotide polymorphisms (SNPs) data from ~2,700 individuals. We show that a substantial proportion of variation in cortical surface area is explained by additive effects of SNPs dispersed throughout the genome, with a larger heritable effect for visual and auditory sensory and insular cortices (h2~0.45). Genome-wide SNPs collectively account for, on average, about half of twin heritability across cortical regions (N=466 twins). We find enriched genetic effects in or near genes. We also observe that SNPs in evolutionarily more conserved regions contributed significantly to the heritability of cortical surface area, particularly, for medial and temporal cortical regions. SNPs in less conserved regions contributed more to occipital and dorsolateral prefrontal cortices.