- Browse by Author
Browsing by Author "Scherrer, Tanja"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Interplay between posttranscriptional and posttranslational interactions of RNA-binding proteins(2011-06) Mittal, Nitish; Scherrer, Tanja; Gerber, André P.; Janga, Sarath ChandraRNA-binding proteins (RBPs) play important roles in the posttranscriptional control of gene expression. However, our understanding of how RBPs interact with each other at different regulatory levels to coordinate the RNA metabolism of the cell is rather limited. Here, we construct the posttranscriptional regulatory network among 69 experimentally studied RBPs in yeast to show that more than one-third of the RBPs autoregulate their expression at the posttranscriptional level and demonstrate that autoregulatory RBPs show reduced protein noise with a tendency to encode for hubs in this network. We note that in- and outdegrees in the posttranscriptional RBP–RBP regulatory network exhibit gaussian and scale-free distributions, respectively. This network was also densely interconnected with extensive cross-talk between RBPs belonging to different posttranscriptional steps, regulating varying numbers of cellular RNA targets. We show that feed-forward loops and superposed feed-forward/feedback loops are the most significant three-node subgraphs in this network. Analysis of the corresponding protein–protein interaction (posttranslational) network revealed that it is more modular than the posttranscriptional regulatory network. There is significant overlap between the regulatory and protein–protein interaction networks, with RBPs that potentially control each other at the posttranscriptional level tending to physically interact and being part of the same ribonucleoprotein (RNP) complex. Our observations put forward a model wherein RBPs could be classified into those that can stably interact with a limited number of protein partners, forming stable RNP complexes, and others that form transient hubs, having the ability to interact with multiple RBPs forming many RNPs in the cell.Item A Screen for RNA-Binding Proteins in Yeast Indicates Dual Functions for Many Enzymes(2010-11) Scherrer, Tanja; Mittal, Nitish; Janga, Sarath Chandra; Gerber, André P.Hundreds of RNA-binding proteins (RBPs) control diverse aspects of post-transcriptional gene regulation. To identify novel and unconventional RBPs, we probed high-density protein microarrays with fluorescently labeled RNA and selected 200 proteins that reproducibly interacted with different types of RNA from budding yeast Saccharomyces cerevisiae. Surprisingly, more than half of these proteins represent previously known enzymes, many of them acting in metabolism, providing opportunities to directly connect intermediary metabolism with posttranscriptional gene regulation. We mapped the RNA targets for 13 proteins identified in this screen and found that they were associated with distinct groups of mRNAs, some of them coding for functionally related proteins. We also found that overexpression of the enzyme Map1 negatively affects the expression of experimentally defined mRNA targets. Our results suggest that many proteins may associate with mRNAs and possibly control their fates, providing dense connections between different layers of cellular regulation.