ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Schepers, Luke E."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    In Vivo Visualization and Quantification of Rat Laryngeal Blood Supply After Hydration Challenge
    (Wiley, 2024) Duan, Chenwei; Anderson, Jennifer L.; Schepers, Luke E.; Damen, Frederick W.; Cox, Abigail; Goergen, Craig J.; Sivasankar, Preeti M.; Surgery, School of Medicine
    Objectives: Systemic dehydration decreases total body blood volume; however, hemodynamic alterations at the level of local organs, such as the larynx, remain unclear. Here we sought to quantify superior thyroid artery (STA) blood flow after dehydration and rehydration using in vivo magnetic resonance angiography (MRA) and ultrasound imaging in a rat model. Methods: Male Sprague-Dawley rats (N = 17) were included in this prospective, repeated measures design. Rats first underwent MRA to determine baseline STA cross-sectional area, followed by high-frequency in vivo ultrasound imaging to measure STA blood velocity at baseline. Next, rats were systemically dehydrated (water withholding), followed by rehydration (water ad-lib). Ultrasound imaging was repeated immediately after dehydration and following rehydration. The STA blood velocity and STA cross-sectional area were used to compute STA blood flow. Three rats served as temporal controls for ultrasound imaging. To determine if the challenges to hydration status affected the STA cross-sectional area, four rats underwent only MRA at baseline, dehydration, and rehydration. Results: Systemic dehydration resulted in 10.5% average body weight loss. Rehydration resulted in average body weight gain of 10.9%. Statistically significant reductions were observed in STA mean blood flow rate after dehydration. Rehydration reversed these changes to pre-dehydration levels. No significant differences were observed in STA cross-sectional area with dehydration or rehydration. Conclusion: Systemic dehydration decreased blood flow in the superior thyroid artery. Rehydration restored blood flow in the STA. Change in hydration status did not alter the STA cross-sectional area. These preliminary findings demonstrate the feasibility of using ultrasound and MRA to quantify hemodynamic changes and visualize laryngeal blood vessels.
  • Loading...
    Thumbnail Image
    Item
    Quantification of murine myocardial infarct size using 2-D and 4-D high-frequency ultrasound
    (American Physiological Society, 2022) Dann, Melissa M.; Clark, Sydney Q.; Trzaskalski, Natasha A.; Earl, Conner C.; Schepers, Luke E.; Pulente, Selena M.; Lennord, Ebonee N.; Annamalai, Karthik; Gruber, Joseph M.; Cox, Abigail D.; Lorenzen-Schmidt, Ilka; Seymour, Richard; Kim, Kyoung-Han; Goergen, Craig J.; Mulvihill, Erin E.; Medicine, School of Medicine
    Ischemic heart disease is the leading cause of death in the United States, Canada, and worldwide. Severe disease is characterized by coronary artery occlusion, loss of blood flow to the myocardium, and necrosis of tissue, with subsequent remodeling of the heart wall, including fibrotic scarring. The current study aims to demonstrate the efficacy of quantitating infarct size via two-dimensional (2-D) echocardiographic akinetic length and four-dimensional (4-D) echocardiographic infarct volume and surface area as in vivo analysis techniques. We further describe and evaluate a new surface area strain analysis technique for estimating myocardial infarction (MI) size after ischemic injury. Experimental MI was induced in mice via left coronary artery ligation. Ejection fraction and infarct size were measured through 2-D and 4-D echocardiography. Infarct size established via histology was compared with ultrasound-based metrics via linear regression analysis. Two-dimensional echocardiographic akinetic length (r = 0.76, P = 0.03), 4-D echocardiographic infarct volume (r = 0.85, P = 0.008), and surface area (r = 0.90, P = 0.002) correlate well with histology. Although both 2-D and 4-D echocardiography were reliable measurement techniques to assess infarct, 4-D analysis is superior in assessing asymmetry of the left ventricle and the infarct. Strain analysis performed on 4-D data also provides additional infarct sizing techniques, which correlate with histology (surface strain: r = 0.94, P < 0.001, transmural thickness: r = 0.76, P = 0.001). Two-dimensional echocardiographic akinetic length, 4-D echocardiography ultrasound, and strain provide effective in vivo methods for measuring fibrotic scarring after MI. NEW & NOTEWORTHY: Our study supports that both 2-D and 4-D echocardiographic analysis techniques are reliable in quantifying infarct size though 4-D ultrasound provides a more holistic image of LV function and structure, especially after myocardial infarction. Furthermore, 4-D strain analysis correctly identifies infarct size and regional LV dysfunction after MI. Therefore, these techniques can improve functional insight into the impact of pharmacological interventions on the pathophysiology of cardiac disease.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University