- Browse by Author
Browsing by Author "Scheckenbach, Kathrin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item AluY-mediated germline deletion, duplication and somatic stem cell reversion in UBE2T defines a new subtype of Fanconi anemia(Oxford University Press, 2015-09-15) Virts, Elizabeth L.; Jankowska, Anna; Mackay, Craig; Glaas, Marcel F.; Wiek, Constanze; Kelich, Stephanie L.; Lottmann, Nadine; Kennedy, Felicia M.; Marchal, Christophe; Lehnert, Erik; Scharf, Rüdiger E.; Dufour, Carlo; Lanciotti, Marina; Farruggia, Piero; Santoro, Alessandra; Savasan, Süreyya; Scheckenbach, Kathrin; Schipper, Jörg; Wagenmann, Martin; Lewis, Todd; Leffak, Michael; Farlow, Janice L.; Foroud, Tatiana M.; Honisch, Ellen; Niederacher, Dieter; Chakraborty, Sujata C.; Vance, Gail H.; Pruss, Dmitry; Timms, Kirsten M.; Lanchbury, Jerry S.; Alpi, Arno F.; Hanenberg, Helmut; Department of Pediatrics, IU School of MedicineFanconi anemia (FA) is a rare inherited disorder clinically characterized by congenital malformations, progressive bone marrow failure and cancer susceptibility. At the cellular level, FA is associated with hypersensitivity to DNA-crosslinking genotoxins. Eight of 17 known FA genes assemble the FA E3 ligase complex, which catalyzes monoubiquitination of FANCD2 and is essential for replicative DNA crosslink repair. Here, we identify the first FA patient with biallelic germline mutations in the ubiquitin E2 conjugase UBE2T. Both mutations were aluY-mediated: a paternal deletion and maternal duplication of exons 2–6. These loss-of-function mutations in UBE2T induced a cellular phenotype similar to biallelic defects in early FA genes with the absence of FANCD2 monoubiquitination. The maternal duplication produced a mutant mRNA that could encode a functional protein but was degraded by nonsense-mediated mRNA decay. In the patient's hematopoietic stem cells, the maternal allele with the duplication of exons 2–6 spontaneously reverted to a wild-type allele by monoallelic recombination at the duplicated aluY repeat, thereby preventing bone marrow failure. Analysis of germline DNA of 814 normal individuals and 850 breast cancer patients for deletion or duplication of UBE2T exons 2–6 identified the deletion in only two controls, suggesting aluY-mediated recombinations within the UBE2T locus are rare and not associated with an increased breast cancer risk. Finally, a loss-of-function germline mutation in UBE2T was detected in a high-risk breast cancer patient with wild-type BRCA1/2. Cumulatively, we identified UBE2T as a bona fide FA gene (FANCT) that also may be a rare cancer susceptibility gene.Item RAD51C – a new human cancer susceptibility gene for sporadic squamous cell carcinoma of the head and neck (HNSCC)(Elsevier, 2014-03) Scheckenbach, Kathrin; Baldus, Stephan E.; Balz, Vera; Freund, Marcel; Pakropa, Petra; Sproll, Christoph; Schäfer, Karl-Ludwig; Wagenmann, Martin; Schipper, Jörg; Hanenberg, Helmut; Pediatrics, School of MedicineINTRODUCTION: Head and neck squamous cell carcinomas (HNSSCs) are one of the leading causes of cancer-associated death worldwide. Although certain behavioral risk factors are well recognized as tumor promoting, there is very little known about the presence of predisposing germline mutations in HNSCC patients. METHODS: In this study, we analyzed 121 individuals with HNSCCs collected at our institution for germline alterations in the newly identified cancer susceptibility gene RAD51C. RESULTS: Sequencing of all exons and the adjacent introns revealed five distinct heterozygous sequence deviations in RAD51C in seven patients (5.8%). A female patient without any other risk factors carried a germline mutation that disrupted the canonical splice acceptor site of exon 5 (c.706-2A>G). CONCLUSIONS: As there are only a few publications in the literature identifying germline mutations in head and neck cancer patients, our results provide the first indication that paralogs of RAD51, recently described as mutated in breast and ovarian cancer patients, might also be candidates for genetic risk factors in sporadic squamous cell carcinomas of the head and neck.