- Browse by Author
Browsing by Author "Saykin, A. J."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Blood biomarkers for memory: toward early detection of risk for Alzheimer disease, pharmacogenomics, and repurposed drugs(Nature Publishing Group, 2019-12-02) Niculescu, A. B.; Le-Niculescu, H.; Roseberry, K.; Wang, S.; Hart, J.; Kaur, A.; Robertson, H.; Jones, T.; Strasburger, A.; Williams, A.; Kurian, S. M.; Lamb, B.; Shekhar, A.; Lahiri, D. K.; Saykin, A. J.; Psychiatry, School of MedicineShort-term memory dysfunction is a key early feature of Alzheimer’s disease (AD). Psychiatric patients may be at higher risk for memory dysfunction and subsequent AD due to the negative effects of stress and depression on the brain. We carried out longitudinal within-subject studies in male and female psychiatric patients to discover blood gene expression biomarkers that track short term memory as measured by the retention measure in the Hopkins Verbal Learning Test. These biomarkers were subsequently prioritized with a convergent functional genomics approach using previous evidence in the field implicating them in AD. The top candidate biomarkers were then tested in an independent cohort for ability to predict state short-term memory, and trait future positive neuropsychological testing for cognitive impairment. The best overall evidence was for a series of new, as well as some previously known genes, which are now newly shown to have functional evidence in humans as blood biomarkers: RAB7A, NPC2, TGFB1, GAP43, ARSB, PER1, GUSB, and MAPT. Additional top blood biomarkers include GSK3B, PTGS2, APOE, BACE1, PSEN1, and TREM2, well known genes implicated in AD by previous brain and genetic studies, in humans and animal models, which serve as reassuring de facto positive controls for our whole-genome gene expression discovery approach. Biological pathway analyses implicate LXR/RXR activation, neuroinflammation, atherosclerosis signaling, and amyloid processing. Co-directionality of expression data provide new mechanistic insights that are consistent with a compensatory/scarring scenario for brain pathological changes. A majority of top biomarkers also have evidence for involvement in other psychiatric disorders, particularly stress, providing a molecular basis for clinical co-morbidity and for stress as an early precipitant/risk factor. Some of them are modulated by existing drugs, such as antidepressants, lithium and omega-3 fatty acids. Other drug and nutraceutical leads were identified through bioinformatic drug repurposing analyses (such as pioglitazone, levonorgestrel, salsolidine, ginkgolide A, and icariin). Our work contributes to the overall pathophysiological understanding of memory disorders and AD. It also opens new avenues for precision medicine- diagnostics (assement of risk) as well as early treatment (pharmacogenomically informed, personalized, and preventive).Item How Will Aducanumab Approval Impact AD Research?(Springer, 2021-07-22) Weiner, Michael W.; Aisen, P. S.; Beckett, L. A.; Green, R. C.; Jagust, W.; Morris, J. C.; Okonkwo, O.; Perrin, R. J.; Petersen, R. C.; Rivera Mindt, M.; Saykin, A. J.; Shaw, L. M.; Toga, A. W.; Trojanowski, J. Q.; Medical and Molecular Genetics, School of MedicineThe accelerated approval of aducanumab (AduhelmTM) by the US FDA is a momentous event. For the first time, a therapeutic agent that targets the neurobiology of Alzheimer’s disease (AD) is available for clinical use (1, 2). In addition to the FDA approval of aducanumab, the FDA has also provided “Breakthrough therapy designation” for Lilly’s Donanemab and Eisai’s Lecnemab which also are monoclonal antibodies that remove brain amyloid plaques and may slow cognitive decline. Aducanumab approval will impact clinical practice. The effects on AD clinical research will be profound in both positive and negative ways. This Editorial reflects the opinion of the leadership of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), a large multisite longitudinal observational study with the goal of validating biomarkers for clinical trials. ADNI data have been used to help design and statistically power many AD clinical trials, including the aducanumab studies.Item Mood, stress and longevity: convergence on ANK3(Springer Nature, 2016) Rangaraju, S.; Levey, D. F.; Nho, K.; Jain, N.; Andrews, K. D.; Le-Niculescu, H.; Salomon, D. R.; Saykin, A. J.; Petrascheck, M.; Niculescu, A. B.; Psychiatry, School of MedicineAntidepressants have been shown to improve longevity in C. elegans. It is plausible that orthologs of genes involved in mood regulation and stress response are involved in such an effect. We sought to understand the underlying biology. First, we analyzed the transcriptome from worms treated with the antidepressant mianserin, previously identified in a large-scale unbiased drug screen as promoting increased lifespan in worms. We identified the most robust treatment-related changes in gene expression, and identified the corresponding human orthologs. Our analysis uncovered a series of genes and biological pathways that may be at the interface between antidepressant effects and longevity, notably pathways involved in drug metabolism/degradation (nicotine and melatonin). Second, we examined which of these genes overlap with genes which may be involved in depressive symptoms in an aging non-psychiatric human population (n=3577), discovered using a genome-wide association study (GWAS) approach in a design with extremes of distribution of phenotype. Third, we used a convergent functional genomics (CFG) approach to prioritize these genes for relevance to mood disorders and stress. The top gene identified was ANK3. To validate our findings, we conducted genetic and gene-expression studies, in C. elegans and in humans. We studied C. elegans inactivating mutants for ANK3/unc-44, and show that they survive longer than wild-type, particularly in older worms, independently of mianserin treatment. We also show that some ANK3/unc-44 expression is necessary for the effects of mianserin on prolonging lifespan and survival in the face of oxidative stress, particularly in younger worms. Wild-type ANK3/unc-44 increases in expression with age in C. elegans, and is maintained at lower youthful levels by mianserin treatment. These lower levels may be optimal in terms of longevity, offering a favorable balance between sufficient oxidative stress resistance in younger worms and survival effects in older worms. Thus, ANK3/unc-44 may represent an example of antagonistic pleiotropy, in which low-expression level in young animals are beneficial, but the age-associated increase becomes detrimental. Inactivating mutations in ANK3/unc-44 reverse this effect and cause detrimental effects in young animals (sensitivity to oxidative stress) and beneficial effect in old animals (increased survival). In humans, we studied if the most significant single nucleotide polymorphism (SNP) for depressive symptoms in ANK3 from our GWAS has a relationship to lifespan, and show a trend towards longer lifespan in individuals with the risk allele for depressive symptoms in men (odds ratio (OR) 1.41, P=0.031) but not in women (OR 1.08, P=0.33). We also examined whether ANK3, by itself or in a panel with other top CFG-prioritized genes, acts as a blood gene-expression biomarker for biological age, in two independent cohorts, one of live psychiatric patients (n=737), and one of suicide completers from the coroner's office (n=45). We show significantly lower levels of ANK3 expression in chronologically younger individuals than in middle age individuals, with a diminution of that effect in suicide completers, who presumably have been exposed to more severe and acute negative mood and stress. Of note, ANK3 was previously reported to be overexpressed in fibroblasts from patients with Hutchinson-Gilford progeria syndrome, a form of accelerated aging. Taken together, these studies uncover ANK3 and other genes in our dataset as biological links between mood, stress and longevity/aging, that may be biomarkers as well as targets for preventive or therapeutic interventions. Drug repurposing bioinformatics analyses identified the relatively innocuous omega-3 fatty acid DHA (docosahexaenoic acid), piracetam, quercetin, vitamin D and resveratrol as potential longevity promoting compounds, along with a series of existing drugs, such as estrogen-like compounds, antidiabetics and sirolimus/rapamycin. Intriguingly, some of our top candidate genes for mood and stress-modulated longevity were changed in expression in opposite direction in previous studies in the Alzheimer disease. Additionally, a whole series of others were changed in expression in opposite direction in our previous studies on suicide, suggesting the possibility of a "life switch" actively controlled by mood and stress.Item Prospective assessment of white matter integrity in adult stem cell transplant recipients(Springer, 2016-06) Correa, D. D.; Wang, Y.; West, J. D.; Peck, K. K.; Root, J. C.; Baser, R. E.; Thaler, H. T.; Shore, T. B.; Jakubowski, A.; Saykin, A. J.; Relkin, N.; Department of Radiology and Imaging Sciences, School of MedicineHematopoietic stem cell transplantation (HSCT) is often used in the treatment of hematologic disorders. Although it can be curative, the pre-transplant conditioning regimen can be associated with neurotoxicity. In this prospective study, we examined white matter (WM) integrity with diffusion tensor imaging (DTI) and neuropsychological functioning before and one year after HSCT in twenty-two patients with hematologic disorders and ten healthy controls evaluated at similar intervals. Eighteen patients received conditioning treatment with high-dose (HD) chemotherapy, and four had full dose total body irradiation (fTBI) and HD chemotherapy prior to undergoing an allogeneic or autologous HSCT. The results showed a significant decrease in mean diffusivity (MD) and axial diffusivity (AD) in diffuse WM regions one year after HSCT (p-corrected <0.05) in the patient group compared to healthy controls. At baseline, patients treated with allogeneic HSCT had higher MD and AD in the left hemisphere WM than autologous HSCT patients (p-corrected <0.05). One year post-transplant, patients treated with allogeneic HSCT had lower fractional anisotropy (FA) and higher radial diffusivity (RD) in the right hemisphere and left frontal WM compared to patients treated with autologous HSCT (p-corrected <0.05). There were modest but significant correlations between MD values and cognitive test scores, and these were greatest for timed tests and in projection tracts. Patients showed a trend toward a decline in working memory, and had lower cognitive test scores than healthy controls at the one-year assessment. The findings suggest a relatively diffuse pattern of alterations in WM integrity in adult survivors of HSCT.