- Browse by Author
Browsing by Author "Saunders, Jessica L."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item 2020 Year in Review: Pharmacologic Treatments for COVID-19(2021-04) Saunders, Jessica L.; Davis, Michael D.; Pediatrics, School of MedicineCOVID-19, caused by SARS-CoV-2 infection, has led to a pandemic of acute respiratory illness. Pharmacologic treatments for COVID-19 have included treatments targeting infection prevention, prevention of viral replication, reducing inflammation and managing symptoms of respiratory failure caused by the disease. This is a review of key pharmacologic treatments for COVID-19 based on peer-reviewed articles from 2020.Item Effects of pH alteration on respiratory syncytial virus in human airway epithelial cells(European Respiratory Society, 2023-07-03) Saunders, Jessica L.; Daniels, Ivana A.; Edwards, Taiya L.; Relich, Ryan F.; Zhao, Yi; Smith, Laura A.; Gaston, Benjamin M.; Davis, Michael D.; Pediatrics, School of MedicineBackground: Respiratory syncytial virus (RSV) is a leading cause of respiratory distress and hospitalisation in the paediatric population. Low airway surface pH impairs antimicrobial host defence and worsens airway inflammation. Inhaled Optate safely raises airway surface pH in humans and raises intracellular pH in primary human airway epithelial cells (HAECs) in vitro. We aimed to determine whether raising intracellular pH with Optate would decrease infection and replication of RSV in primary HAECs. Methods: We cultured HAECs from healthy subjects in both air-liquid interface and submerged conditions. We infected HAECs with green fluorescent protein-labelled RSV (GFP-RSV; multiplicity of infection=1) and treated them with Optate or PBS control. We collected supernatant after a 4-h incubation and then every 24 h. We used fluorescence intensity, fluorescent particle counts, plaque assays, Western blots and ELISA to quantitate infection. Results: In submerged culture, fluorescence intensity decreased in Optate-treated cells (48 h p=0.0174, 72 h p≤0.001). Similarly, Optate treatment resulted in decreased fluorescent particle count (48 h p=0.0178, 72 h p=0.0019) and plaque-forming units (48 h p=0.0011, 72 h p=0.0148) from cell culture supernatant. In differentiated HAECs cultured at ALI, Optate treatment decreased fluorescence intensity (p≤0.01), GFP via Western blot and ELISA (p<0.0001), and RSV-fusion protein via ELISA (p=0.001). Additionally, RSV infection decreased as Optate concentration increased in a dose-dependent manner (p<0.001). Conclusions: Optate inhibits RSV infection in primary HAECs in a dose-dependent manner. These findings suggest that Optate may have potential as an inhaled therapeutic for patients with RSV.Item Pediatric pulmonology year in review 2020: Physiology(Wiley, 2021-08) Delecaris, Angela O.; Averill, Samantha H.; Krasinkiewicz, Jonathan; Saunders, Jessica L.; Ren, Clement L.; Pediatrics, School of MedicinePulmonary physiology is a core element of pediatric pulmonology care and research. This article reviews some of the notable publications in physiology that were published in Pediatric Pulmonology in 2020.Item Transnasal Aerosol Delivery During High-Flow Nasal Cannula Therapy(Daedalus Enterprises, 2022) Saunders, Jessica L.; Davis, Michael D.; Pediatrics, School of MedicineItem Transnasal Aerosol Delivery via HFNC: A Question of Safety and Efficacy(Daedalus Enterprises, 2023) Saunders, Jessica L.; Davis, Michael D.; Pediatrics, School of Medicine