- Browse by Author
Browsing by Author "Sassoon, Daniel"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item CARDIOVASCULAR AND HEMODYNAMIC EFFECTS OF GLUCAGON-LIKE PEPTIDE-1(Springer US, 2014-09) Goodwill, Adam G.; Mather, Kieren J.; Conteh, Abass M.; Sassoon, Daniel; Noblet, Jillian N.; Tune, Johnathan D.; Department of Cellular & Integrative Physiology, School of MedicineGlucagon-like peptide-1 (GLP-1) is an incretin hormone that has been shown to have hemodynamic and cardioprotective capacity in addition to its better characterized glucoregulatory actions. Because of this, emerging research has focused on the ability of GLP-1 based therapies to drive myocardial substrate selection, enhance cardiac performance and regulate heart rate, blood pressure and vascular tone. These studies have produced consistent and reproducible results amongst numerous laboratories. However, there are obvious disparities in findings obtained in small animal models versus those of higher mammals. This species dependent discrepancy calls to question, the translational value of individual findings. Moreover, few studies of GLP-1 mediated cardiovascular action have been performed in the presence of a pre-existing comorbidities (e.g. obesity/diabetes) which limits interpretation of the effectiveness of incretin-based therapies in the setting of disease. This review addresses cardiovascular and hemodynamic potential of GLP-1 based therapies with attention to species specific effects as well as the interaction between therapies and disease.Item Critical contribution of KV1 channels to the regulation of coronary blood flow(Springer, 2016-09) Goodwill, Adam G.; Noblet, Jillian N.; Sassoon, Daniel; Fu, Lijuan; Kassab, Ghassan S.; Schepers, Luke; Herring, B. Paul; Rottgen, Trey S.; Tune, Johnathan D.; Dick, Gregory M.; Cellular and Integrative Physiology, School of MedicineIon channels in smooth muscle control coronary vascular tone, but the mechanisms require further investigation. The purpose of this study was to evaluate the functional role of KV1 channels on porcine coronary blood flow by using the selective antagonist correolide. KV1 channel gene transcripts were found in porcine coronary arteries, with KCNA5 (encoding KV1.5) being most abundant (P<0.001). Immunohistochemical staining demonstrated KV1.5 protein in the vascular smooth muscle layer of both porcine and human coronary arteries, including microvessels. Whole-cell patch clamp experiments demonstrated significant correolide-sensitive (1–10 µM) current in coronary smooth muscle. In vivo studies included direct intracoronary infusion of vehicle or correolide into a pressure-clamped left anterior descending artery of healthy swine (n=5 in each group) with simultaneous measurement of coronary blood flow. Intracoronary correolide (~0.3–3 µM targeted plasma concentration) had no effect on heart rate or systemic pressure, but reduced coronary blood flow in a dose-dependent manner (P<0.05). Dobutamine (0.3–10 µg/kg/min) elicited coronary metabolic vasodilation and intracoronary correolide (3 µM) significantly reduced coronary blood flow at any given level of myocardial oxygen consumption (P<0.001). Coronary artery occlusions (15 s) elicited reactive hyperemia and correolide (3 µM) reduced the flow volume repayment by approximately 30% (P<0.05). Taken together, these data support a major role for KV1 channels in modulating baseline coronary vascular tone and perhaps vasodilation in response to increased metabolism and transient ischemia.Item Glucagon-like peptide-1 (7-36) but not (9-36) augments cardiac output during myocardial ischemia via a Frank-Starling mechanism(Springer, 2014) Goodwill, Adam G.; Tune, Johnathan D.; Noblet, Jillian N.; Conteh, Abass M.; Sassoon, Daniel; Casalini, Eli D.; Mather, Kieren J.; Department of Cellular & Integrative Physiology, IU School of MedicineThis study examined the cardiovascular effects of GLP-1 (7-36) or (9-36) on myocardial oxygen consumption, function and systemic hemodynamics in vivo during normal perfusion and during acute, regional myocardial ischemia. Lean Ossabaw swine received systemic infusions of saline vehicle or GLP-1 (7-36 or 9-36) at 1.5, 3.0, and 10.0 pmol/kg/min in sequence for 30 min at each dose, followed by ligation of the left circumflex artery during continued infusion at 10.0 pmol/kg/min. Systemic GLP-1 (9-36) had no effect on coronary flow, blood pressure, heart rate or indices of cardiac function before or during regional myocardial ischemia. Systemic GLP-1 (7-36) exerted no cardiometabolic or hemodynamic effects prior to ischemia. During ischemia, GLP-1 (7-36) increased cardiac output by approximately 2 L/min relative to vehicle-controls (p = 0.003). This response was not diminished by treatment with the non-depolarizing ganglionic blocker hexamethonium. Left ventricular pressure-volume loops measured during steady-state conditions with graded occlusion of the inferior vena cava to assess load-independent contractility revealed that GLP-1 (7-36) produced marked increases in end-diastolic volume (74 ± 1 to 92 ± 5 ml; p = 0.03) and volume axis intercept (8 ± 2 to 26 ± 8; p = 0.05), without any change in the slope of the end-systolic pressure-volume relationship vs. vehicle during regional ischemia. GLP-1 (9-36) produced no changes in any of these parameters compared to vehicle. These findings indicate that short-term systemic treatment with GLP-1 (7-36) but not GLP-1 (9-36) significantly augments cardiac output during regional myocardial ischemia, via increases in ventricular preload without changes in cardiac inotropy.Item KV7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine(American Physiological Society, 2016-03-15) Goodwill, Adam G.; Fu, Lijuan; Noblet, Jillian N.; Casalini, Eli D.; Sassoon, Daniel; Berwick, Zachary C.; Kassab, Ghassan S.; Tune, Johnathan D.; Dick, Gregory M.; Department of Cellular & Integrative Physiology, IU School of MedicineHydrogen peroxide (H2O2) and voltage-dependent K(+) (KV) channels play key roles in regulating coronary blood flow in response to metabolic, ischemic, and paracrine stimuli. The KV channels responsible have not been identified, but KV7 channels are possible candidates. Existing data regarding KV7 channel function in the coronary circulation (limited to ex vivo assessments) are mixed. Thus we examined the hypothesis that KV7 channels are present in cells of the coronary vascular wall and regulate vasodilation in swine. We performed a variety of molecular, biochemical, and functional (in vivo and ex vivo) studies. Coronary arteries expressed KCNQ genes (quantitative PCR) and KV7.4 protein (Western blot). Immunostaining demonstrated KV7.4 expression in conduit and resistance vessels, perhaps most prominently in the endothelial and adventitial layers. Flupirtine, a KV7 opener, relaxed coronary artery rings, and this was attenuated by linopirdine, a KV7 blocker. Endothelial denudation inhibited the flupirtine-induced and linopirdine-sensitive relaxation of coronary artery rings. Moreover, linopirdine diminished bradykinin-induced endothelial-dependent relaxation of coronary artery rings. There was no effect of intracoronary flupirtine or linopirdine on coronary blood flow at the resting heart rate in vivo. Linopirdine had no effect on coronary vasodilation in vivo elicited by ischemia, H2O2, or tachycardia. However, bradykinin increased coronary blood flow in vivo, and this was attenuated by linopirdine. These data indicate that KV7 channels are expressed in some coronary cell type(s) and influence endothelial function. Other physiological functions of coronary vascular KV7 channels remain unclear, but they do appear to contribute to endothelium-dependent responses to paracrine stimuli.Item Pitfalls of Social Media(Elsevier, 2018-02) Sassoon, Daniel; Gunderman, Richard B.; Radiology and Imaging Sciences, School of Medicine