- Browse by Author
Browsing by Author "Sanders, Virginia M."
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item Axotomy-induced target disconnection promotes an additional death mechanism involved in motoneuron degeneration in amyotrophic lateral sclerosis transgenic mice(Wiley, 2014-07) Haulcomb, Melissa M.; Mesnard, Nichole A.; Batka, Richard J.; Alexander, Thomas D.; Sanders, Virginia M.; Jones, Kathryn J.; Department of Anatomy & Cell Biology, School of MedicineThe target disconnection theory of amyotrophic lateral sclerosis (ALS) pathogenesis suggests that disease onset is initiated by a peripheral pathological event resulting in neuromuscular junction loss and motoneuron (MN) degeneration. Presymptomatic mSOD1(G93A) mouse facial MN (FMN) are more susceptible to axotomy-induced cell death than wild-type (WT) FMN, which suggests additional CNS pathology. We have previously determined that the mSOD1 molecular response to facial nerve axotomy is phenotypically regenerative and indistinguishable from WT, whereas the surrounding microenvironment shows significant dysregulation in the mSOD1 facial nucleus. To elucidate the mechanisms underlying the enhanced mSOD1 FMN loss after axotomy, we superimposed the facial nerve axotomy model on presymptomatic mSOD1 mice and investigated gene expression for death receptor pathways after target disconnection by axotomy vs. disease progression. We determined that the TNFR1 death receptor pathway is involved in axotomy-induced FMN death in WT and is partially responsible for the mSOD1 FMN death. In contrast, an inherent mSOD1 CNS pathology resulted in a suppressed glial reaction and an upregulation in the Fas death pathway after target disconnection. We propose that the dysregulated mSOD1 glia fail to provide support the injured MN, leading to Fas-induced FMN death. Finally, we demonstrate that, during disease progression, the mSOD1 facial nucleus displays target disconnection-induced gene expression changes that mirror those induced by axotomy. This validates the use of axotomy as an investigative tool in understanding the role of peripheral target disconnection in the pathogenesis of ALS.Item CD4+ T cell expression of the IL-10 receptor is necessary for facial motoneuron survival after axotomy(BMC, 2020) Runge, Elizabeth M.; Iyer, Abhirami K.; Setter, Deborah O.; Kennedy, Felicia M.; Sanders, Virginia M.; Jones, Kathryn J.; Anatomy and Cell Biology, School of MedicineBackground: After peripheral nerve transection, facial motoneuron (FMN) survival depends on an intact CD4+ T cell population and a central source of interleukin-10 (IL-10). However, it has not been determined previously whether CD4+ T cells participate in the central neuroprotective IL-10 cascade after facial nerve axotomy (FNA). Methods: Immunohistochemical labeling of CD4+ T cells, pontine vasculature, and central microglia was used to determine whether CD4+ T cells cross the blood-brain barrier and enter the facial motor nucleus (FMNuc) after FNA. The importance of IL-10 signaling in CD4+ T cells was assessed by performing adoptive transfer of IL-10 receptor beta (IL-10RB)-deficient CD4+ T cells into immunodeficient mice prior to injury. Histology and qPCR were utilized to determine the impact of IL-10RB-deficient T cells on FMN survival and central gene expression after FNA. Flow cytometry was used to determine whether IL-10 signaling in T cells was necessary for their differentiation into neuroprotective subsets. Results: CD4+ T cells were capable of crossing the blood-brain barrier and associating with reactive microglial nodules in the axotomized FMNuc. Full induction of central IL-10R gene expression after FNA was dependent on CD4+ T cells, regardless of their own IL-10R signaling capability. Surprisingly, CD4+ T cells lacking IL-10RB were incapable of mediating neuroprotection after axotomy and promoted increased central expression of genes associated with microglial activation, antigen presentation, T cell co-stimulation, and complement deposition. There was reduced differentiation of IL-10RB-deficient CD4+ T cells into regulatory CD4+ T cells in vitro. Conclusions: These findings support the interdependence of IL-10- and CD4+ T cell-mediated mechanisms of neuroprotection after axotomy. CD4+ T cells may potentiate central responsiveness to IL-10, while IL-10 signaling within CD4+ T cells is necessary for their ability to rescue axotomized motoneuron survival. We propose that loss of IL-10 signaling in CD4+ T cells promotes non-neuroprotective autoimmunity after FNA.Item Cellular Sources and Neuroprotective Roles of Interleukin-10 in the Facial Motor Nucleus after Axotomy(MDPI, 2022-10-09) Runge, Elizabeth M.; Setter, Deborah O.; Iyer, Abhirami K.; Regele, Eric J.; Kennedy, Felicia M.; Sanders, Virginia M.; Jones, Kathryn J.; Anatomy, Cell Biology and Physiology, School of MedicineFacial motoneuron (FMN) survival is mediated by CD4+ T cells in an interleukin-10 (IL-10)-dependent manner after facial nerve axotomy (FNA), but CD4+ T cells themselves are not the source of this neuroprotective IL-10. The aims of this study were to (1) identify the temporal and cell-specific induction of IL-10 expression in the facial motor nucleus and (2) elucidate the neuroprotective capacity of this expression after axotomy. Immunohistochemistry revealed that FMN constitutively produced IL-10, whereas astrocytes were induced to make IL-10 after FNA. Il10 mRNA co-localized with microglia before and after axotomy, but microglial production of IL-10 protein was not detected. To determine whether any single source of IL-10 was critical for FMN survival, Cre/Lox mouse strains were utilized to selectively knock out IL-10 in neurons, astrocytes, and microglia. In agreement with the localization data reflecting concerted IL-10 production by multiple cell types, no single cellular source of IL-10 alone could provide neuroprotection after FNA. These findings suggest that coordinated neuronal and astrocytic IL-10 production is necessary for FMN survival and has roles in neuronal homeostasis, as well as neuroprotective trophism after axotomy.Item Fast and slow rates of symptom progression in the transgenic SOD1 murine model of ALS(Office of the Vice Chancellor for Research, 2011-04-08) Haulcomb, Melissa M.; Mesnard, Nichole A.; Sanders, Virginia M.; Jones, Kathryn J.ALS is a disease targeting motoneurons (MN). In the SOD1 mouse model of ALS, an axonal dieback process is initiated during the pre-symptomatic stage where MN axons withdraw from target muscle. We have used facial nerve axotomy, which resembles the axonal die-back response, in pre-symptomatic SOD1 mice to investigate aspects of the disease. Apoptotic and pro-inflammatory gene expression is upregulated in pre-symptomatic SOD1 axotomized facial nuclei in addition to significant SOD1 MN death. Disease progression in symptomatic SOD1 facial nuclei resembles the molecular response initiated by axotomy. MN survival levels in symptomatic SOD1 and axotomized, presymptomatic SOD1 facial nuclei are similar. Therefore, facial nerve axotomy produces a disease onset-like response. The current study used behavioral testing to assess motor function, and revealed two groups of SOD1 mice with differing rates of symptomatic disease progression. The slow progression group had significantly less motor impairments compared to the fast progression group, but no difference in symptom onset was seen. Fast progression group showed higher mRNA levels for genes related to axonal injury. Symptomatic severity in SOD1 mice correlates to the cellular and molecular responses to axonal injury. Therefore, research using treatments to slow disease or extend.Item Identification of a resilient mouse facial motoneuron population following target disconnection by injury or disease(IOS, 2018) Setter, Deborah O.; Haulcomb, Melissa M.; Beahrs, Taylor; Meadows, Rena M.; Schartz, Nicole D.; Custer, Sara K.; Sanders, Virginia M.; Jones, Kathryn J.; Anatomy and Cell Biology, IU School of MedicineBackground: When nerve transection is performed on adult rodents, a substantial population of neurons survives short-term disconnection from target, and the immune system supports this neuronal survival, however long-term survival remains unknown. Understanding the effects of permanent axotomy on cell body survival is important as target disconnection is the first pathological occurrence in fatal motoneuron diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Objective: The goal of this study was to determine if facial motoneurons (FMN) could survive permanent target disconnection up to 26 weeks post-operation (wpo) after facial nerve axotomy (FNA). In addition, the potentially additive effects of immunodeficiency and motoneuron disease on post-axotomy FMN survival were examined. Methods: This study included three wild type (WT) mouse strains (C57BL/6J, B6SJL, and FVB/NJ) and three experimental models (RAG-2-/-: immunodeficiency; mSOD1: ALS; Smn-/-/SMN2+/+: SMA). All animals received a unilateral FNA, and FMN survival was quantified at early and extended post-operative timepoints. Results: In the C57BL/6J WT group, FMN survival significantly decreased at 10 wpo (55 ± 6%), and then remained stable out to 26 wpo (47 ± 6%). In the RAG-2-/- and mSOD1 groups, FMN death occurred much earlier at 4 wpo, and survival plateaued at approximately 50% at 10 wpo. The SMA model and other WT strains also exhibited approximately 50% FMN survival after FNA. Conclusion: These results indicate that immunodeficiency and motoneuron disease accelerate axotomy-induced neuron death, but do not increase total neuron death in the context of permanent target disconnection. This consistent finding of a target disconnection-resilient motoneuron population is prevalent in other peripheral nerve injury models and in neurodegenerative disease models as well. Characterization of the distinct populations of vulnerable and resilient motoneurons may reveal new therapeutic approaches for injury and disease.Item Identification of B6SJL mSOD1(G93A) mouse subgroups with different disease progression rates(Wiley, 2015-12-15) Haulcomb, Melissa M.; Mesnard-Hoaglin, Nichole A.; Batka, Richard J.; Meadows, Rena M.; Miller, Whitney M.; McMillan, Kathryn P.; Brown, Todd J.; Sanders, Virginia M.; Jones, Kathryn J.; Department of Anatomy & Cell Biology, IU School of MedicineDisease progression rates among patients with amyotrophic lateral sclerosis (ALS) vary greatly. Although the majority of affected individuals survive 3-5 years following diagnosis, some subgroups experience a more rapidly progressing form, surviving less than 1 year, and other subgroups experience slowly progressing forms, surviving nearly 50 years. Genetic heterogeneity and environmental factors pose significant barriers in investigating patient progression rates. Similar to the case for humans, variation in survival within the mSOD1 mouse has been well documented, but different progression rates have not been investigated. The present study identifies two subgroups of B6SJL mSOD1(G93A) mice with different disease progression rates, a fast progression group (FPG) and slow progression group, as evidenced by differences in the rate of motor function decline. In addition, increased disease-associated gene expression within the FPG facial motor nucleus confirmed the presence of a more severe phenotype. We hypothesize that a more severe disease phenotype could be the result of 1) an earlier onset of axonal disconnection with a consistent degeneration rate or 2) a more severe or accelerated degenerative process. We performed a facial nerve transection axotomy in both mSOD1 subgroups prior to disease onset as a method to standardize the axonal disconnection. Instead of leading to comparable gene expression in both subgroups, this standardization did not eliminate the severe phenotype in the FPG facial nucleus, suggesting that the FPG phenotype is the result of a more severe or accelerated degenerative process. We theorize that these mSOD1 subgroups are representative of the rapid and slow disease phenotypes often experienced in ALS.Item Immunoregulation of the central response to peripheral nerve injury: motoneuron survival and relevance to ALS(2017-04) Setter, Deborah Olmstead; Jones, Kathryn J.; Block, Michelle L.; Sanders, Virginia M.; Sengelaub, Dale R.; Xu, Xiao-MingFacial nerve axotomy (FNA) in immunodeficient mice causes significantly more facial motoneuron (FMN) loss relative to wild type (WT), indicating that the immune system is neuroprotective. Further studies reveal that both CD4+ T cells and interleukin 10 (IL-10) act centrally to promote neuronal survival after injury. This study first investigated the roles of IL-10 and CD4+ T cells in neuroprotection after axotomy. CD4+ T cell-mediated neuroprotection requires centrally-produced IL-10, but the source of IL-10 is unknown. Using FNA on IL-10 reporter mice, immunohistochemistry was employed to identify the IL-10 source. Unexpectedly, axotomy induced astrocyte production of IL-10. To test if microglia- or astrocyte-specific IL-10 is needed for neuroprotection, cell-specific conditional knockout mice were generated. Neither knockout scenario affected FMN survival after FNA, suggesting that coordinated IL-10 production by both glia contributes to neuroprotection. The effect of immune status on the post-FNA molecular response was studied to characterize CD4+ T cell-mediated neuroprotection. In the recombinase-activating gene2 knockout (RAG-2-/-) mouse model of immunodeficiency, glial microenvironment responses were significantly impaired. Reconstitution with CD4+ T cells restored glial activation to normal levels. Motoneuron regeneration responses remained unaffected by immune status. These findings indicate that CD4+ T cell-mediated neuroprotection after injury occurs indirectly via microenvironment regulation. Immunodysregulation is evident in amyotrophic lateral sclerosis (ALS), and FMN survival after FNA is worse in the mutant superoxide dismutase (mSOD1) mouse model of ALS. Further experiments reveal that mSOD1 CD4+ T cells are neuroprotective in RAG-2-/- mice, whereas mSOD1 whole splenocytes (WS) are not. The third aim examined if the mSOD1 WS environment inhibits mSOD1 CD4+ T cell glial regulation after axotomy. Unexpectedly, both treatments were equally effective in promoting glial activation. Instead, mSOD1 WS treatment induced a motoneuron-specific death mechanism prevalent in ALS. In conclusion, the peripheral immune system regulates the central glial microenvironment utilizing IL-10 to promote neuronal survival after axotomy. Astrocytes, specifically, may be responsible for transducing peripheral immune signals into microenvironment regulation. Additionally, the immune system in ALS may directly participate in disease pathology.Item Impact of peripheral immune status on central molecular responses to facial nerve axotomy(Elsevier, 2018-02) Setter, Deborah O.; Runge, Elizabeth M.; Schartz, Nicole D.; Kennedy, Felicia M.; Brown, Brandon L.; McMillan, Kathryn P.; Miller, Whitney M.; Shah, Kishan M.; Haulcomb, Melissa M.; Sanders, Virginia M.; Jones, Karthryn J.; Anatomy and Cell Biology, IU School of MedicineWhen facial nerve axotomy (FNA) is performed on immunodeficient recombinase activating gene-2 knockout (RAG-2-/-) mice, there is greater facial motoneuron (FMN) death relative to wild type (WT) mice. Reconstituting RAG-2-/- mice with whole splenocytes rescues FMN survival after FNA, and CD4+ T cells specifically drive immune-mediated neuroprotection. Evidence suggests that immunodysregulation may contribute to motoneuron death in amyotrophic lateral sclerosis (ALS). Immunoreconstitution of RAG-2-/- mice with lymphocytes from the mutant superoxide dismutase (mSOD1) mouse model of ALS revealed that the mSOD1 whole splenocyte environment suppresses mSOD1 CD4+ T cell-mediated neuroprotection after FNA. The objective of the current study was to characterize the effect of CD4+ T cells on the central molecular response to FNA and then identify if mSOD1 whole splenocytes blocked these regulatory pathways. Gene expression profiles of the axotomized facial motor nucleus were assessed from RAG-2-/- mice immunoreconstituted with either CD4+ T cells or whole splenocytes from WT or mSOD1 donors. The findings indicate that immunodeficient mice have suppressed glial activation after axotomy, and cell transfer of WT CD4+ T cells rescues microenvironment responses. Additionally, mSOD1 whole splenocyte recipients exhibit an increased astrocyte activation response to FNA. In RAG-2-/- + mSOD1 whole splenocyte mice, an elevation of motoneuron-specific Fas cell death pathways is also observed. Altogether, these findings suggest that mSOD1 whole splenocytes do not suppress mSOD1 CD4+ T cell regulation of the microenvironment, and instead, mSOD1 whole splenocytes may promote motoneuron death by either promoting a neurotoxic astrocyte phenotype or inducing Fas-mediated cell death pathways. This study demonstrates that peripheral immune status significantly affects central responses to nerve injury. Future studies will elucidate the mechanisms by which mSOD1 whole splenocytes promote cell death and if inhibiting this mechanism can preserve motoneuron survival in injury and disease.Item Locomotor analysis identifies early compensatory changes during disease progression and subgroup classification in a mouse model of amyotrophic lateral sclerosis(Medknow Publications, 2017-10) Haulcomb, Melissa M.; Meadows, Rena M.; Miller, Whitney M.; McMillan, Kathryn P.; Hilsmeyer, MeKenzie J.; Wang, Xuefu; Beaulieu, Wesley T.; Dickinson, Stephanie L.; Brown, Todd J.; Sanders, Virginia M.; Jones, Kathryn J.; Anatomy and Cell Biology, School of MedicineAmyotrophic lateral sclerosis is a motoneuron degenerative disease that is challenging to diagnose and presents with considerable variability in survival. Early identification and enhanced understanding of symptomatic patterns could aid in diagnosis and provide an avenue for monitoring disease progression. Use of the mSOD1G93A mouse model provides control of the confounding environmental factors and genetic heterogeneity seen in amyotrophic lateral sclerosis patients, while investigating underlying disease-induced changes. In the present study, we performed a longitudinal behavioral assessment paradigm and identified an early hindlimb symptom, resembling the common gait abnormality foot drop, along with an accompanying forelimb compensatory mechanism in the mSOD1G93A mouse. Following these initial changes, mSOD1 mice displayed a temporary hindlimb compensatory mechanism resembling an exaggerated steppage gait. As the disease progressed, these compensatory mechanisms were not sufficient to sustain fundamental locomotor parameters and more severe deficits appeared. We next applied these initial findings to investigate the inherent variability in B6SJL mSOD1G93A survival. We identified four behavioral variables that, when combined in a cluster analysis, identified two subpopulations with different disease progression rates: a fast progression group and a slow progression group. This behavioral assessment paradigm, with its analytical approaches, provides a method for monitoring disease progression and detecting mSOD1 subgroups with different disease severities. This affords researchers an opportunity to search for genetic modifiers or other factors that likely enhance or slow disease progression. Such factors are possible therapeutic targets with the potential to slow disease progression and provide insight into the underlying pathology and disease mechanisms.Item The Role of Interleukin-10 in CD4+ T Cell-Mediated Neuroprotection after Facial Nerve Injury(2019-05) Runge, Elizabeth Marie; Jones, Kathryn J.; Block, Michelle L.; Sanders, Virginia M.; Sengelaub, Dale R.; Xu, Xiao-MingThe adaptive arm of the immune system is necessary for facial motoneuron (FMN) survival after facial nerve axotomy (FNA). CD4+ T cells mediate FMN survival after FNA in an interleukin-10 (IL-10) dependent manner, but are not themselves the cellular source of neuroprotective IL-10. The aims of this study are to elucidate the neuroprotective capacity of cell-specific IL-10 expression, and to investigate the manner in which CD4+ T cells participate in IL-10 signaling after FNA. Immunohistochemistry revealed that FMN themselves were constitutive producers of IL-10, and astrocytes were induced to make IL-10 after FNA. Il10 mRNA co-localized with microglia before and after axotomy, but microglial production of IL-10 protein was not detected. To determine whether any single source of IL-10 is critical for FMN survival, Cre/Lox mouse strains were utilized to selectively knock out IL-10 in neurons, astrocytes, and microglia. In agreement with the localization data reflecting concerted IL-10 production by multiple cell types, no single cellular source of IL-10 was necessary for FMN survival. Gene expression analysis of wild-type, immunodeficient, and immune cell-reconstituted animals was performed to determine the role of the immune system in modulating the central IL-10 signaling cascade. This revealed that CD4+ T cells were necessary for full upregulation of central IL-10 receptor (IL-10R) expression after FNA, regardless of their own IL-10R beta (IL-10RB) expression or IL-10R signaling capability. Surprisingly, the ability of CD4+ T cells to respond to IL-10 was critical for their ability to mediate neuroprotection. Adoptive transfer of IL-10RB-deficient T cells resulted in increased central expression of genes associated with microglial activation, antigen presentation, T cell co-stimulation, and complement deposition in response to injury. These data suggest that IL-10RB functions on the T cell to prevent non-neuroprotective immune activation after axotomy. The conclusions drawn from this study support a revised hypothesis for the mechanisms of IL-10-mediated neuroprotection, in which IL-10 serves both trophic and immune-modulating roles after axotomy. This research has implications for the development of immune-modifying therapies for peripheral nerve injury and motoneuron diseases.