- Browse by Author
Browsing by Author "Samia, Arthur M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Case of Metastatic Basal Cell Carcinoma (BCC) With Spinal and Pulmonary Metastases Treated With Vismodegib, Sonedigib, and Radiotherapy(Springer Nature, 2022-03-17) Samia, Arthur M.; Nenow, Joseph M.; Boyer, Philip; Medicine, School of MedicineBasal cell carcinoma (BCC) is the most common malignancy worldwide and has one of the most favorable prognoses due to its tendency to remain local. Clinical presentation with rare distant metastases significantly increases morbidity and mortality. Historically, no effective therapies have existed for locally advanced or metastatic BCC. Recent research highlights the possibility of treating patients with advanced and metastatic BCC with hedgehog pathway inhibitors, such as vismodegib or sonedigib. We present the case of a 62-year-old male with a history of a large left shoulder lesion, which was diagnosed as a nodulocystic BCC following biopsy and histopathologic examination. The primary lesion was managed with surgical excision, and his ensuing metastatic disease was treated with vismodegib, sonedigib, tumor debulking, and radiation therapy. Magnetic resonance imaging and computed tomography of the chest revealed probable metastases to the apical segment of the left upper lobe and thoracic spine, leading to spinal stenosis and probable cause of the patient's ataxia and paresthesias. Due to the ability of BCCs to transform during metastasis, it is impossible to identify the nature of metastatic lesions (i.e., basaloid, squamous, or hybrid) without biopsy. In this case report, we review the etiologies, typical demographics, presentation patterns, and treatment regimens for metastatic BCC and the possibility of metastatic disease transforming to squamous or hybrid variants.Item Integrated Analysis of Single-Cell and Bulk RNA Data Reveals Complexity and Significance of the Melanoma Interactome(MDPI, 2025-01-05) Diaz, Michael J.; Tran, Jasmine T.; Samia, Arthur M.; Forouzandeh, Mahtab; Grant-Kels, Jane M.; Montanez-Wiscovich, Marjorie E.; Medicine, School of MedicineBackground: Despite significant strides in anti-melanoma therapies, resistance and recurrence remain major challenges. A deeper understanding of the underlying biology of these challenges is necessary for developing more effective treatment paradigms. Methods: Melanoma single-cell data were retrieved from the Broad Single Cell Portal (SCP11). High-dimensional weighted gene co-expression network analysis (hdWGCNA), CellChat, and ligand-receptor relative crosstalk (RC) scoring were employed to evaluate intercellular and intracellular signaling. The prognostic value of key regulatory genes was assessed via Kaplan-Meier (KM) survival analysis using the 'SKCM-TCGA' dataset. Results: Twenty-seven (27) gene co-expression modules were identified via hdWGCNA. Notable findings include NRAS Q61L melanomas being enriched for modules involving C19orf10 and ARF4, while BRAF V600E melanomas were enriched for modules involving ALAS1 and MYO1B. Additionally, CellChat analysis highlighted several dominant signaling pathways, namely MHC-II, CD99, and Collagen-receptor signaling, with numerous significant ligand-receptor interactions from melanocytes, including CD99-CD99 communications with cancer-associated fibroblasts, endothelial cells, NK cells, and T-cells. KM analysis revealed that higher expression of SELL, BTLA, IL2RG, PDGFA, CLDN11, ITGB3, and SPN improved overall survival, while higher FGF5 expression correlated with worse survival. Protein-protein interaction network analysis further indicated significant interconnectivity among the identified prognostic genes. Conclusions: Overall, these insights underscore critical immune interactions and potential therapeutic targets to combat melanoma resistance, paving the way for more personalized and effective treatment strategies.