- Browse by Author
Browsing by Author "Saltz, Joel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Privacy‐preserving record linkage across disparate institutions and datasets to enable a learning health system: The national COVID cohort collaborative (N3C) experience(Wiley, 2024-01-11) Tachinardi, Umberto; Grannis, Shaun J.; Michael, Sam G.; Misquitta, Leonie; Dahlin, Jayme; Sheikh, Usman; Kho, Abel; Phua, Jasmin; Rogovin, Sara S.; Amor, Benjamin; Choudhury, Maya; Sparks, Philip; Mannaa, Amin; Ljazouli, Saad; Saltz, Joel; Prior, Fred; Baghal, Ahmen; Gersing, Kenneth; Embi, Peter J.; Medicine, School of MedicineIntroduction: Research driven by real-world clinical data is increasingly vital to enabling learning health systems, but integrating such data from across disparate health systems is challenging. As part of the NCATS National COVID Cohort Collaborative (N3C), the N3C Data Enclave was established as a centralized repository of deidentified and harmonized COVID-19 patient data from institutions across the US. However, making this data most useful for research requires linking it with information such as mortality data, images, and viral variants. The objective of this project was to establish privacy-preserving record linkage (PPRL) methods to ensure that patient-level EHR data remains secure and private when governance-approved linkages with other datasets occur. Methods: Separate agreements and approval processes govern N3C data contribution and data access. The Linkage Honest Broker (LHB), an independent neutral party (the Regenstrief Institute), ensures data linkages are robust and secure by adding an extra layer of separation between protected health information and clinical data. The LHB's PPRL methods (including algorithms, processes, and governance) match patient records using "deidentified tokens," which are hashed combinations of identifier fields that define a match across data repositories without using patients' clear-text identifiers. Results: These methods enable three linkage functions: Deduplication, Linking Multiple Datasets, and Cohort Discovery. To date, two external repositories have been cross-linked. As of March 1, 2023, 43 sites have signed the LHB Agreement; 35 sites have sent tokens generated for 9 528 998 patients. In this initial cohort, the LHB identified 135 037 matches and 68 596 duplicates. Conclusion: This large-scale linkage study using deidentified datasets of varying characteristics established secure methods for protecting the privacy of N3C patient data when linked for research purposes. This technology has potential for use with registries for other diseases and conditions.Item Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group(Nature Research, 2020-05-12) Amgad, Mohamed; Stovgaard, Elisabeth Specht; Balslev, Eva; Thagaard, Jeppe; Chen, Weijie; Dudgeon, Sarah; Sharma, Ashish; Kerner, Jennifer K.; Denkert, Carsten; Yuan, Yinyin; AbdulJabbar, Khalid; Wienert, Stephan; Savas, Peter; Voorwerk, Leonie; Beck, Andrew H.; Madabhushi, Anant; Hartman, Johan; Sebastian, Manu M.; Horlings, Hugo M.; Hudeček, Jan; Ciompi, Francesco; Moore, David A.; Singh, Rajendra; Roblin, Elvire; Balancin, Marcelo Luiz; Mathieu, Marie-Christine; Lennerz, Jochen K.; Kirtani, Pawan; Chen, I-Chun; Braybrooke, Jeremy P.; Pruneri, Giancarlo; Demaria, Sandra; Adams, Sylvia; Schnitt, Stuart J.; Lakhani, Sunil R.; Rojo, Federico; Comerma, Laura; Badve, Sunil S.; Khojasteh, Mehrnoush; Symmans, W. Fraser; Sotiriou, Christos; Gonzalez-Ericsson, Paula; Pogue-Geile, Katherine L.; Kim, Rim S.; Rimm, David L.; Viale, Giuseppe; Hewitt, Stephen M.; Bartlett, John M. S.; Penault-Llorca, Frédérique; Goel, Shom; Lien, Huang-Chun; Loibl, Sibylle; Kos, Zuzana; Loi, Sherene; Hanna, Matthew G.; Michiels, Stefan; Kok, Marleen; Nielsen, Torsten O.; Lazar, Alexander J.; Bago-Horvath, Zsuzsanna; Kooreman, Loes F. S.; Van der Laak, Jeroen A.W. M.; Saltz, Joel; Gallas, Brandon D.; Kurkure, Uday; Barnes, Michael; Salgado, Roberto; Cooper, Lee A. D.; International Immuno-Oncology Biomarker Working Group; Pathology and Laboratory Medicine, School of MedicineAssessment of tumor-infiltrating lymphocytes (TILs) is increasingly recognized as an integral part of the prognostic workflow in triple-negative (TNBC) and HER2-positive breast cancer, as well as many other solid tumors. This recognition has come about thanks to standardized visual reporting guidelines, which helped to reduce inter-reader variability. Now, there are ripe opportunities to employ computational methods that extract spatio-morphologic predictive features, enabling computer-aided diagnostics. We detail the benefits of computational TILs assessment, the readiness of TILs scoring for computational assessment, and outline considerations for overcoming key barriers to clinical translation in this arena. Specifically, we discuss: 1. ensuring computational workflows closely capture visual guidelines and standards; 2. challenges and thoughts standards for assessment of algorithms including training, preanalytical, analytical, and clinical validation; 3. perspectives on how to realize the potential of machine learning models and to overcome the perceptual and practical limits of visual scoring.