- Browse by Author
Browsing by Author "Salminen, Lauren E."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Adaptive Identification of Cortical and Subcortical Imaging Markers of Early Life Stress and Posttraumatic Stress Disorder(Wiley, 2019-05) Salminen, Lauren E.; Morey, Rajendra A.; Riedel, Brandalyn C.; Jahanshad, Neda; Dennis, Emily L.; Thompson, Paul M.; Radiology and Imaging Sciences, School of MedicinePosttraumatic stress disorder (PTSD) is a heterogeneous condition associated with a range of brain imaging abnormalities. Early life stress (ELS) contributes to this heterogeneity, but we do not know how a history of ELS influences traditionally defined brain signatures of PTSD. Here, we used a novel machine learning method – evolving partitions to improve classification (EPIC) – to identify shared and unique structural neuroimaging markers of ELS and PTSD in 97 combat-exposed military veterans. METHODS: We used EPIC with repeated cross-validation (CV) to determine how combinations of cortical thickness, surface area, and subcortical brain volumes could contribute to classification of PTSD (n = 40) versus controls (n = 57), and classification of ELS within the PTSD (ELS+ n = 16; ELS− n = 24) and control groups (ELS+ n = 16; ELS− n = 41). Additional inputs included intracranial volume, age, sex, adult trauma, and depression. RESULTS: On average, EPIC classified PTSD with 69% accuracy (SD = 5%), and ELS with 64% accuracy in the PTSD group (SD = 10%), and 62% accuracy in controls (SD = 6%). EPIC selected unique sets of individual features that classified each group with 75–85% accuracy in post hoc analyses; combinations of regions marginally improved classification from the individual atlas-defined brain regions. Across analyses, surface area in the right posterior cingulate was the only variable that was repeatedly selected as an important feature for classification of PTSD and ELS. CONCLUSIONS: EPIC revealed unique patterns of features that distinguished PTSD and ELS in this sample of combat-exposed military veterans, which may represent distinct biotypes of stress-related neuropathology.Item Altered Cortical Brain Structure and Increased Risk for Disease Seen Decades After Perinatal Exposure to Maternal Smoking: A Study of 9000 Adults in the UK Biobank(Oxford Academic, 2019-12-17) Salminen, Lauren E.; Wilcox, Rand R.; Zhu, Alyssa H.; Riedel, Brandalyn C.; Ching, Christopher R.K.; Rashid, Faisal; Thomopoulos, Sophia I.; Saremi, Arvin; Harrison, Marc B.; Ragothaman, Anjanibhargavi; Knight, Victoria; Boyle, Christina P.; Medland, Sarah E.; Thompson, Paul M.; Jahanshad, Neda; Radiology and Imaging Sciences, School of MedicineSecondhand smoke exposure is a major public health risk that is especially harmful to the developing brain, but it is unclear if early exposure affects brain structure during middle age and older adulthood. Here we analyzed brain MRI data from the UK Biobank in a population-based sample of individuals (ages 44–80) who were exposed (n = 2510) or unexposed (n = 6079) to smoking around birth. We used robust statistical models, including quantile regressions, to test the effect of perinatal smoke exposure (PSE) on cortical surface area (SA), thickness, and subcortical volumes. We hypothesized that PSE would be associated with cortical disruption in primary sensory areas compared to unexposed (PSE−) adults. After adjusting for multiple comparisons, SA was significantly lower in the pericalcarine (PCAL), inferior parietal (IPL), and regions of the temporal and frontal cortex of PSE+ adults; these abnormalities were associated with increased risk for several diseases, including circulatory and endocrine conditions. Sensitivity analyses conducted in a hold-out group of healthy participants (exposed, n = 109, unexposed, n = 315) replicated the effect of PSE on SA in the PCAL and IPL. Collectively our results show a negative, long term effect of PSE on sensory cortices that may increase risk for disease later in life.