- Browse by Author
Browsing by Author "Sahu, Ravi P."
Now showing 1 - 10 of 15
Results Per Page
Sort Options
Item Acute Ethanol Exposure Augments Low-Dose UVB-Mediated Systemic Immunosuppression via Enhanced Production of Platelet-Activating Factor Receptor Agonists(Elsevier, 2019-01-22) Travers, Jeffrey B.; Weyerbacher, Jonathan; Ocana, Jesus A.; Borchers, Christina; Rapp, Christine M.; Sahu, Ravi P.; Dermatology, School of MedicineItem Chemotherapeutic agents subvert tumor immunity by generating agonists of platelet-activating factor(American Association for Cancer Research, 2014-12-01) Sahu, Ravi P.; Ocana, Jesus A.; Harrison, Kathleen A.; Ferracini, Matheus; Touloukian, Christopher E.; Al-Hassani, Mohammed; Sun, Louis; Loesch, Mathew; Murphy, Robert C.; Althouse, Sandra K.; Perkins, Susan M.; Speicher, Paul J.; Tyler, Douglas S.; Konger, Raymond L.; Travers, Jeffrey B.; Department of Dermatology, IU School of MedicineOxidative stress suppresses host immunity by generating oxidized lipid agonists of the platelet-activating factor receptor (PAF-R). Because many classical chemotherapeutic drugs induce reactive oxygen species (ROS), we investigated whether these drugs might subvert host immunity by activating PAF-R. Here, we show that PAF-R agonists are produced in melanoma cells by chemotherapy that is administered in vitro, in vivo, or in human subjects. Structural characterization of the PAF-R agonists induced revealed multiple oxidized glycerophosphocholines that are generated nonenzymatically. In a murine model of melanoma, chemotherapeutic administration could augment tumor growth by a PAF-R-dependent process that could be blocked by treatment with antioxidants or COX-2 inhibitors or by depletion of regulatory T cells. Our findings reveal how PAF-R agonists induced by chemotherapy treatment can promote treatment failure. Furthermore, they offer new insights into how to improve the efficacy of chemotherapy by blocking its heretofore unknown impact on PAF-R activation.Item Cigarette smoke exposure mediated generation of Platelet-activating factor agonists induces systemic immunosuppression(Office of the Vice Chancellor for Research, 2012-04-13) Sahu, Ravi P.; Turner, Matthew J.; Konger, Raymond L.; Travers, Jeffrey B.The ubiquitous environmental pollutant cigarette smoke (CS) is known to exert immodulatory effects. CS also acts as a potent pro-oxidative stressor. Several studies including ours have characterized the importance of various pro-oxidative stressors including UVB to inhibit host immunity and an importance of the platelet-activating factor (1-alkyl-2-acetyl-glycerophosphocholine; PAF), a potent lipid mediator in this process. PAF is produced enzymatically in a tightly-controlled process. In addition, oxidative stressors can act directly on glycerophosphocholines (GPC) to produce oxidized GPC which are potent PAF-R agonists. The present studies employed model systems consisting of PAF-receptor (PAF-R)-expressing (KBP) and–deficient (KBM) cells and mice (wild type [WT] and Pafr-/-) to determine whether CS exposure could generate PAF-R agonists in blood and whether it could suppress contact hypersensitivity reactions in a PAF-R-dependent manner. We show that lipid extracts derived from the blood of CS-treated WT mice resulted in immediate intracellular calcium (Ca2+2+mice. This inhibitory effect of CS in WT mice were similar to those induced by a PAF-R agonist, CPAF or histamine. Furthermore, this inhibition of CHS by CS in WT mice was blocked by antioxidants vitamin C and N-acetyl cysteine. These findings indicate that CS exposure induces systemic immunosuppression in a PAF-R-dependent manner. These studies provide the first evidence that the pro-oxidative stressor CS can modulate cutaneous immunity via the generation of PAF agonists through lipid oxidation.) mobilization response only in KBP cells. However, no Camobilization response was detected with lipid extracts from non-smoked (sham) mice both in KBP and KBM cells. In addition, lipid extracts only from CS-treated mice induced an increase in IL-8 secretion in KBP cells indicating that CS generates systemic PAF-R agonists. CS exposure also inhibited contact hypersensitivity to the allergen dinitrofluorobenzene (DNFB) selectively in WT but not inPafr-/-Item Creatine and Nicotinamide Prevent Oxidant-Induced Senescence in Human Fibroblasts(MDPI, 2021-11-16) Mahajan, Avinash S.; Arikatla, Venkata S.; Thyagarajan, Anita; Zhelay, Tetyana; Sahu, Ravi P.; Kemp, Michael G.; Spandau, Dan F.; Travers, Jeffrey B.; Dermatology, School of MedicineDermal fibroblasts provide structural support by producing collagen and other structural/support proteins beneath the epidermis. Fibroblasts also produce insulin-like growth factor-1 (IGF-1), which binds to the IGF-1 receptors (IGF-1Rs) on keratinocytes to activate signaling pathways that regulate cell proliferation and cellular responses to genotoxic stressors like ultraviolet B radiation. Our group has determined that the lack of IGF-1 expression due to fibroblast senescence in the dermis of geriatric individuals is correlated with an increased incidence of skin cancer. The present studies tested the hypothesis that pro-energetics creatine monohydrate (Cr) and nicotinamide (NAM) can protect normal dermal human fibroblasts (DHF) against experimentally induced senescence. To that end, we used an experimental model of senescence in which primary DHF are treated with hydrogen peroxide (H2O2) in vitro, with senescence measured by staining for beta-galactosidase activity, p21 protein expression, and senescence associated secretory phenotype cytokine mRNA levels. We also determined the effect of H2O2 on IGF-1 mRNA and protein expression. Our studies indicate that pretreatment with Cr or NAM protects DHF from the H2O2-induced cell senescence. Treatment with pro-energetics post-H2O2 had no effect. Moreover, these agents also inhibited reactive oxygen species generation from H2O2 treatment. These studies suggest a potential strategy for protecting fibroblasts in geriatric skin from undergoing stress-induced senescence, which may maintain IGF-1 levels and therefore limit carcinogenesis in epidermal keratinocytes.Item Dietary Polyphenols in Cancer Chemoprevention: Implications in Pancreatic Cancer(MDPI, 2020-07-23) Thyagarajan, Anita; Forino, Andrew S.; Konger, Raymond L.; Sahu, Ravi P.; Pathology and Laboratory Medicine, School of MedicineNaturally occurring dietary agents present in a wide variety of plant products, are rich sources of phytochemicals possessing medicinal properties, and thus, have been used in folk medicine for ages to treat various ailments. The beneficial effects of such dietary components are frequently attributed to their anti-inflammatory and antioxidant properties, particularly in regards to their antineoplastic activities. As many tumor types exhibit greater oxidative stress levels that are implicated in favoring autonomous cell growth activation, most chemotherapeutic agents can also enhance tumoral oxidative stress levels in part via generating reactive oxygen species (ROS). While ROS-mediated imbalance of the cellular redox potential can provide novel drug targets, as a consequence, this ROS-mediated excessive damage to cellular functions, including oncogenic mutagenesis, has also been implicated in inducing chemoresistance. This remains one of the major challenges in the treatment and management of human malignancies. Antioxidant-enriched natural compounds offer one of the promising approaches in mitigating some of the underlying mechanisms involved in tumorigenesis and metastasis, and therefore, have been extensively explored in cancer chemoprevention. Among various groups of dietary phytochemicals, polyphenols have been extensively explored for their underlying chemopreventive mechanisms in other cancer models. Thus, the current review highlights the significance and mechanisms of some of the highly studied polyphenolic compounds, with greater emphasis on pancreatic cancer chemoprevention.Item Enhanced Platelet-activating Factor synthesis facilitates acute and delayed effects of ethanol intoxicated thermal burn injury(Elsevier, 2018) Harrison, Kathleen A.; Romer, Eric; Weyerbacher, Jonathan; Ocana, Jesus A.; Sahu, Ravi P.; Murphy, Robert C.; Kelly, Lisa E.; Smith, Townsend A.; Rapp, Christine M.; Borchers, Christina; Cool, David R.; Li, Gengxin; Simman, Richard; Travers, Jeffrey B.; Pharmacology and Toxicology, School of MedicineThermal burn injuries in patients alcohol intoxicated result in greater morbidity and mortality. Murine models combining ethanol and localized thermal burn injury reproduce the systemic toxicity seen in human subjects, which consists of both acute systemic cytokine production with multiple organ dysfunction, as well as a delayed systemic immunosuppression. However, the exact mechanisms for these acute and delayed effects are unclear. These studies sought to define the role of the lipid mediator Platelet-activating factor (PAF) in the acute and delayed effects of intoxicated burn injury. Combining ethanol and thermal burn injury resulted in increased enzymatic PAF generation in a keratinocyte cell line in vitro, human skin explants ex vivo, as well as in murine skin in vivo. Further, the acute increase in inflammatory cytokines such as IL-6, and the systemic immunosuppressive effects of intoxicated thermal burn injury, were suppressed in mice lacking PAF receptors. Together, these studies provide a potential mechanism and novel treatment strategies for the augmented toxicity and immunosuppressive effects of thermal burn injury in the setting of acute ethanol exposure, which involves the pleotropic lipid mediator PAF.Item Epidermal PPARγ influences subcutaneous tumor growth and acts through TNF-α to regulate contact hypersensitivity and the acute photoresponse(Impact Journals, 2017-09-18) Konger, Raymond L.; Derr-Yellin, Ethel; Travers, Jeffrey B.; Ocana, Jesus A.; Sahu, Ravi P.; Pathology and Laboratory Medicine, School of MedicineIt is known that ultraviolet B (UVB) induces PPARγ ligand formation while loss of murine epidermal PPARγ (Pparg-/-epi) promotes UVB-induced apoptosis, inflammation, and carcinogenesis. PPARγ is known to suppress tumor necrosis factor-α (TNF-α) production. TNF-α is also known to promote UVB-induced inflammation, apoptosis, and immunosuppression. We show that Pparg-/-epi mice exhibit increased baseline TNF-α expression. Neutralizing Abs to TNF-α block the increased photo-inflammation and photo-toxicity that is observed in Pparg-/-epi mouse skin. Interestingly, the increase in UVB-induced apoptosis in Pparg-/-epi mice is not accompanied by a change in cyclobutane pyrimidine dimer clearance or in mutation burden. This suggests that loss of epidermal PPARγ does not result in a significant alteration in DNA repair capacity. However, loss of epidermal PPARγ results in marked immunosuppression using a contact hypersensitivity (CHS) model. This impaired CHS response was significantly alleviated using neutralizing TNF-α antibodies or loss of germline Tnf. In addition, the PPARγ agonist rosiglitazone reversed UVB-induced systemic immunosuppression (UV-IS) as well as UV-induced growth of B16F10 melanoma tumor cells in syngeneic mice. Finally, increased B16F10 tumor growth was observed when injected subcutaneously into Pparg-/-epi mice. Thus, we provide novel evidence that epidermal PPARγ is important for cutaneous immune function and the acute photoresponse.Item Evidence for a non-stochastic two-field hypothesis for persistent skin cancer risk(Nature, 2020-11-05) Konger, Raymond L.; Ren, Lu; Sahu, Ravi P.; Derr-Yellin, Ethel; Kim, Young L.; Dermatology, School of MedicineWith recurring carcinogen exposures, individual tumors develop in a field of genetic mutations through a stepwise process of clonal expansion and evolution. Once established, this “cancer field” persists in the absence of continued carcinogen exposures, resulting in a sustained risk for cancer development. Using a bioimaging approach, we previously demonstrated that a dermal premalignant field characterized by inflammatory angiogenesis persists following the cessation of ultraviolet light exposures and accurately predicts future overlying epidermal tumor formation. Following ultraviolet light treatments, others have observed that patches of p53 immunopositive cells persist stochastically throughout the epidermal stem cell population. However, these studies were done by random biopsies, introducing sampling bias. We now show that, rather than being randomly distributed, p53+ epidermal cells are enriched only in areas overlying this multi-focal dermal field. Moreover, we also show that the dermal field is characterized by a senescent phenotype. We propose that persistence of the overlying epithelial cancerization field in the absence of exogenous carcinogens or promoters requires a two-field composite consisting of a dermal senescent field driving the persistence of the overlying epidermal cancer field. These observations challenge current models that suggest that persistence of cancer risk in the absence of continued carcinogen exposures is simply a function of stochastically arranged, long-lived but dormant epithelial clonal stem cells mutants. The model proposed here could provide new insights into how cancer risk persists following cessation of carcinogenic exposures.Item Mice lacking epidermal PPARγ exhibit a marked augmentation in photocarcinogenesis associated with increased UVB-induced apoptosis, inflammation and barrier dysfunction(Wiley, 2012-10) Sahu, Ravi P.; DaSilva, Sonia C.; Rashid, Badri; Martel, Kellie Clay; Jernigan, Danielle; Mehta, Shama R.; Mohamed, Deena R.; Rezania, Samin; Bradish, Joshua R.; Armstrong, Andrew B.; Warren, Simon; Konger, Raymond L.; Department of Medicine, IU School of MedicineRecent studies suggest that peroxisome proliferator-activated receptor gamma (PPARγ) agonists may have cancer chemopreventive activity. Other studies have shown that loss of epidermal PPARγ results in enhanced chemical carcinogenesis in mice via unknown mechanisms. However, ultraviolet B (UVB) exposure represents the primary etiological agent for skin cancer formation and the role of PPARγ in photobiology and photocarcinogenesis is unknown. In previous studies, we demonstrated that UVB irradiation of cells results in the formation of oxidized glycerophosphocholines that exhibit PPARγ ligand activity. We therefore hypothesized that PPARγ would prove to be a chemopreventive target in photocarcinogenesis. We first showed that UVB irradiation of mouse skin causes generation of PPARγ agonist species in vivo. We then generated SKH-1 hairless, albino mice deficient in epidermal Pparg (Pparg-/-(epi)) using a cytokeratin 14 driven Cre-LoxP strategy. Using a chronic model of UVB photocarcinogenesis, we next showed that Pparg-/-(epi) mice exhibit an earlier onset of tumor formation, increased tumor burden and tumor progression. Increased tumor burden in Pparg-/-(epi) mice was accompanied by a significant increase in epidermal hyperplasia and p53 positive epidermal cells in surrounding skin lacking tumors. After acute UVB irradiation, Pparg-/-(epi) mice exhibited an augmentation of both UVB-induced Caspase 3/7 activity and inflammation. Increased apoptosis and inflammation was also observed after treatment with the PPARγ antagonist GW9662. With chronic UVB irradiation, Pparg-/-(epi) mice exhibited a sustained increase in erythema and transepidermal water loss relative to wildtype littermates. This suggests that PPARγ agonists could have possible chemopreventive activity in non-melanoma skin cancer.Item Platelet-Activating Factor-Receptor and Tumor Immunity(JSciMed Central, 2014) Sahu, Ravi P.; Konger, Raymond L.; Travers, Jeffrey B.; Department of Pathology and Laboratory Medicine, IU School of MedicineFirst described in 1972 by Benveniste and colleagues, platelet-activating factor (PAF) remains one of the potent phospholipid known to date. The role of PAF produced enzymatically in mediating diverse biological and pathophysiological processes including inflammatory and allergic diseases and cancers in response to various stimuli has been extensively studied. However, little is known about the role of non-enzymatically-generated PAF-like lipids produced in response to pro-oxidative stressors, particularly in modulating the host immune responses to tumor immunity, which is the focus of this review.