- Browse by Author
Browsing by Author "Safa, Ahmad R."
Now showing 1 - 10 of 30
Results Per Page
Sort Options
Item 4-(4-Chloro-2-methylphenoxy)-N-hydroxybutanamide (CMH) targets mRNA of the c-FLIP variants and induces apoptosis in MCF-7 human breast cancer cells(Springer US, 2010-09) Bijangi-Vishehsaraei, Khadijeh; Huang, Su; Safa, Ahmad R.; Saadatzadeh, Mohammad Reza; Murphy, Michael P.; Department of Pharmacology & Toxicology, School of MedicineCellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP) is a major resistance factor for the tumor necrosis factor-related apoptosis-inducing ligand TRAIL and in drug resistance in human malignancies. c-FLIP is an antagonist of caspases-8 and -10, which inhibits apoptosis and is expressed as long (c-FLIPL) and short (c-FLIPS) splice forms. c-FLIP is often overexpressed in various human cancers, including breast cancer. Several studies have shown that silencing c-FLIP by specific siRNAs sensitizes cancer cells to TRAIL and anticancer agents. However, systemic use of siRNA as a therapeutic agent is not practical at present. In order to reduce or inhibit c-FLIP expression, small molecules are needed to allow targeting c-FLIP without inhibiting caspases-8 and -10. We used a small molecule inhibitor of c-FLIP, 4-(4-chloro-2-methylphenoxy)-N-hydroxybutanamide (CMH), and show that CMH, but not its inactive analog, downregulated c-FLIPL and c-FLIPS mRNA and protein levels, caused poly(ADP-ribose) polymerase (PARP) degradation, reduced cell survival, and induced apoptosis in MCF-7 breast cancer cells. These results revealed that c-FLIP is a critical apoptosis regulator that can serve as a target for small molecule inhibitors that downregulate its expression and serve as effective targeted therapeutics against breast cancer cells.Item Analysis of the cryptic promoter in the 5'-UTR of P27(2012-03-19) Francis, Zachary T.; Zhang, Jian-Ting; Safa, Ahmad R.; Hocevar, Barbara A.Cyclin Dependent Kinase regulation is often manipulated by cancer cells to promote unlimited proliferation. P27 is an important regulator of Cyclin E/CDK 2, which has been found in low amounts in many types of malignant cancers. Lovastatin has been shown to cause cell cycle arrest in the G1 phase of the cell cycle by increasing the P27 protein. There has been some question, however, if lovastatin regulates P27 at the transcriptional or translational level. Although it has been claimed that P27 expression regulation is due to an IRES located in its 5’UTR, other studies suggested that P27 expression is regulated at the level of transcription. To further investigate the regulation mechanism of P27 expression, the 5’-UTR of P27 and its deletion mutants were examined using a luciferase reporter gene in HeLa cells following exposure to lovastatin. It was found that lovastatin stimulated a significant 1.4 fold increase in its promoter activity of the full length 5’UTR (575). Deletion of 35 nucleotides from the 5’ end of the UTR eliminated the lovastatin-induced increase in promoter activity. Further mapping analyses of the first 35 bases showed that two regions, M1 (575-559) and M3 (543-527), were less sensitive to lovastatin than the other mutated constructs. Since M1 and M3 still showed some activity, a construct was created with deletions in both the M1 and M3 regions. This showed no increase in luciferase activity when exposed to lovastatin. Looking at RNA levels, there was a 1.5 fold increase in RNA when the full length 5’UTR was inserted into HeLa cells and exposed to 81 µM of lovastatin. In contrast, there was no increase in RNA when M1/M3 (575-559; 543-527) was inserted into HeLa cells and exposed to 81 µM of lovastatin. In addition, there was a 1.6 fold increase in endogenous P27 RNA levels after HeLa cells were exposed to 81 µM of lovastatin. In all of these experiments, there seems to be two promoters that work cooperatively: M1 (575-559) and M3 (543-527).Item c-FLIP, a Novel Biomarker for Cancer Prognosis, Immunosuppression, Alzheimer’s Disease, Chronic Obstructive Pulmonary Disease (COPD), and a Rationale Therapeutic Target(Taylor & Francis, 2019) Safa, Ahmad R.; Kamocki, Krzysztof; Saadatzadeh, M. Reza; Bijangi-Vishehsaraei, Khadijeh; Pharmacology and Toxicology, School of MedicineDysregulation of c-FLIP (cellular FADD-like IL-1β-converting enzyme inhibitory protein) has been shown in several diseases including cancer, Alzheimer’s disease, and chronic obstructive pulmonary disease (COPD). c-FLIP is a critical anti-cell death protein often overexpressed in tumors and hematological malignancies and its increased expression is often associated with a poor prognosis. c-FLIP frequently exists as long (c-FLIPL) and short (c-FLIPS) isoforms, regulates its anti-cell death functions through binding to FADD (FAS associated death domain protein), an adaptor protein known to activate caspases-8 and -10 and links c-FLIP to several cell death regulating complexes including the death-inducing signaling complex (DISC) formed by various death receptors. c-FLIP also plays a critical role in necroptosis and autophagy. Furthermore, c-FLIP is able to activate several pathways involved in cytoprotection, proliferation, and survival of cancer cells through various critical signaling proteins. Additionally, c-FLIP can inhibit cell death induced by several chemotherapeutics, anti-cancer small molecule inhibitors, and ionizing radiation. Moreover, c-FLIP plays major roles in aiding the survival of immunosuppressive tumor-promoting immune cells and functions in inflammation, Alzheimer’s disease (AD), and chronic obstructive pulmonary disease (COPD). Therefore, c-FLIP can serve as a versatile biomarker for cancer prognosis, a diagnostic marker for several diseases, and an effective therapeutic target. In this article, we review the functions of c-FLIP as an anti-apoptotic protein and negative prognostic factor in human cancers, and its roles in resistance to anticancer drugs, necroptosis and autophagy, immunosuppression, Alzheimer’s disease, and COPD.Item Cellular FLICE-like inhibitory protein (C-FLIP): a novel target for cancer therapy(Bentham Science, 2008-02) Safa, Ahmad R.; Day, Travis W.; Wu, Ching-Huang; Department of Pharmacology and Toxicology, IU School of MedicineCellular FLICE-like inhibitory protein (c-FLIP) has been identified as a protease-dead, procaspase-8-like regulator of death ligand-induced apoptosis, based on observations that c-FLIP impedes tumor necrosis factor-alpha (TNF-alpha), Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by binding to FADD and/or caspase-8 or -10 in a ligand-dependent fashion, which in turn prevents death-inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. c-FLIP is a family of alternatively spliced variants, and primarily exists as long (c-FLIP(L)) and short (c-FLIP(S)) splice variants in human cells. Although c-FLIP has apoptogenic activity in some cell contexts, which is currently attributed to heterodimerization with caspase-8 at the DISC, accumulating evidence indicates an anti-apoptotic role for c-FLIP in various types of human cancers. For example, small interfering RNAs (siRNAs) that specifically knocked down expression of c-FLIP(L) in diverse human cancer cell lines, e.g., lung and cervical cancer cells, augmented TRAIL-induced DISC recruitment, and thereby enhanced effector caspase stimulation and apoptosis. Therefore, the outlook for the therapeutic index of c-FLIP-targeted drugs appears excellent, not only from the efficacy observed in experimental models of cancer therapy, but also because the current understanding of dual c-FLIP action in normal tissues supports the notion that c-FLIP-targeted cancer therapy will be well tolerated. Interestingly, Taxol, TRAIL, as well as several classes of small molecules induce c-FLIP downregulation in neoplastic cells. Efforts are underway to develop small-molecule drugs that induce c-FLIP downregulation and other c-FLIP-targeted cancer therapies. In this review, we assess the outlook for improving cancer therapy through c-FLIP-targeted therapeutics.Item CONTRIBUTIONS OF TM5, ECL3 AND TM6 OF HUMAN BCRP TO ITS OLIGOMERIZATION ACTIVITIES AND TRANSPORT FUNCTIONS(2012-03-16) Mo, Wei; Safa, Ahmad R.; Zhang, Jian-Ting; Chou, Kai-Ming; Hocevar, Barbara A.; Smith, Martin L.Human BCRP is one of the major ATP-binding cassette transporters involved in the development of multidrug resistance in cancer chemotherapy. Overexpression of BCRP in the tumor cell plasma membrane and apical membrane of the gastrointestinal tract leads to decreased intracellular accumulation of various anticancer drugs as well as reduced drug bioavailability. BCRP has been shown to exist on the plasma membrane as higher forms of homo-oligomers. In addition, the oligomerization domain of BCRP has been mapped to the carboxyl-terminal TM5-ECL3-TM6 and this truncated domain, when co-expressed with the full-length BCRP, displays a dominant inhibitory activity on BCRP function. Thus, the oligomerization of BCRP could be a promising target in reversing multidrug resistance mediated by BCRP. To further dissect the oligomerization domains of human BCRP and test the hypothesis that TM5, ECL3, and TM6 each plays a role in BCRP oligomerization and function, we engineered a series of BCRP domain-swapping constructs with alterations at TM5-ECL3-TM6 and further generated HEK293 cells stably expressing wild-type or each domain-swapping construct of BCRP. Using co-immunoprecipitation and chemical cross-linking, we found that TM5, ECL3, and TM6 all appear to partially contribute to BCRP oligomerization, which are responsible for the formation of oligomeric BCRP. However, only TM5 appears to be a major contributor to the transport activity and drug resistance mediated by BCRP, while ECL3 or TM6 is insufficient for BCRP functions. Taken together, these findings suggest that homo-oligomeric human BCRP may be formed by the interactions among TM5, ECL3 and TM6, and TM5 is a crucial domain for BCRP functions and BCRP-mediated drug resistance. These findings may further be used to explore targets for therapeutic development to reverse BCRP-mediated drug resistance and increase the bioavailability of anti-cancer drugs for better treatment of multidrug resistant cancers.Item A Dose-escalation Study of Recombinant Human Interleukin-18 in Combination With Ofatumumab After Autologous Peripheral Blood Stem Cell Transplantation for Lymphoma(Wolters Kluwer, 2018-04) Robertson, Michael J.; Stamatkin, Christopher W.; Pelloso, David; Weisenbach, Jill; Prasad, Nagendra K.; Safa, Ahmad R.; Medicine, School of MedicineInterleukin-18 (IL-18) is an immunostimulatory cytokine that augments antibody-dependent cellular cytotoxicity mediated by human natural killer cells against antibody-coated lymphoma cells in vitro and that has antitumor activity in animal models. Ofatumumab is a CD20 monoclonal antibody with activity against human B-cell lymphomas. A phase I study of recombinant human (rh) IL-18 given with ofatumumab was undertaken in patients with CD20 lymphoma who had undergone high-dose chemotherapy and autologous peripheral blood stem cell transplantation. Cohorts of 3 patients were given intravenous infusions of ofatumumab 1000 mg weekly for 4 weeks with escalating doses of rhIL-18 as a intravenous infusion weekly for 8 consecutive weeks. Nine male patients with CD20 lymphomas were given ofatumumab in combination with rhIL-18 at doses of 3, 10, and 30 μg/kg. No unexpected or dose-limiting toxicities were observed. The mean reduction from predose levels in the number of peripheral blood natural killer cells after the first rhIL-18 infusion was 91%, 96%, and 97% for the 3, 10, and 30 μg/kg cohorts, respectively. Serum concentrations of interferon-γ and chemokines transiently increased following IL-18 dosing. rhIL-18 can be given in biologically active doses by weekly infusions in combination with ofatumumab after peripheral blood stem cell transplantation to patients with lymphoma. A maximum tolerated dose of rhIL-18 plus ofatumumab was not determined. Further studies of rhIL-18 and CD20 monoclonal antibodies in B-cell malignancies are warranted.Item Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces(OAE, 2022-08-02) Safa, Ahmad R.; Pharmacology and Toxicology, School of MedicineResistance to anticancer agents and apoptosis results in cancer relapse and is associated with cancer mortality. Substantial data have provided convincing evidence establishing that human cancers emerge from cancer stem cells (CSCs), which display self-renewal and are resistant to anticancer drugs, radiation, and apoptosis, and express enhanced epithelial to mesenchymal progression. CSCs represent a heterogeneous tumor cell population and lack specific cellular targets, which makes it a great challenge to target and eradicate them. Similarly, their close relationship with the tumor microenvironment creates greater complexity in developing novel treatment strategies targeting CSCs. Several mechanisms participate in the drug and apoptosis resistance phenotype in CSCs in various cancers. These include enhanced expression of ATP-binding cassette membrane transporters, activation of various cytoprotective and survival signaling pathways, dysregulation of stemness signaling pathways, aberrant DNA repair mechanisms, increased quiescence, autophagy, increased immune evasion, deficiency of mitochondrial-mediated apoptosis, upregulation of anti-apoptotic proteins including c-FLIP [cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein], Bcl-2 family members, inhibitors of apoptosis proteins, and PI3K/AKT signaling. Studying such mechanisms not only provides mechanistic insights into these cells that are unresponsive to drugs, but may lead to the development of targeted and effective therapeutics to eradicate CSCs. Several studies have identified promising strategies to target CSCs. These emerging strategies may help target CSC-associated drug resistance and metastasis in clinical settings. This article will review the CSCs drug and apoptosis resistance mechanisms and how to target CSCs.Item eIF3a Regulates De Novo Fatty Acid Synthesis as an Alternative Mechanism in Cisplatin Response in Non-Small Cell Lung Cancer Cells(2024-08) Gu, Boqing; Jerde, Travis; Lu, Tao; Safa, Ahmad R.; Zhang, Jian-Ting; Wek, Ronald C.eIF3a is known to modulate DNA damage repair and cancer chemotherapy resistance partially via translational regulation of Raptor and its downstream mTOR pathway activity. Fatty acid synthase (FASN) has recently been reported to exert negative feedback on the mTOR signaling pathway, and FASN overexpression is associated with reduced chemotherapy efficiency in multiple cancer types. Here, we show that eIF3a exerts additional regulation on mTOR signaling pathway and chemotherapy resistance in non-small cell lung cancer by inhibiting FASN-mediated de novo lipid synthesis. Through genetic and chemical manipulations, we demonstrate that eIF3a physically interacts with the 5’-UTR of FASN mRNA to prevent FASN protein synthesis. Furthermore, FASN downregulation by eIF3a results in accumulation of malonyl-CoA, a substrate for fatty acid synthesis, which in turn directly inhibits mTOR activity of mTORC1 complex, decreasing NER protein level and cellular sensitivity to cisplatin in an eIF3a-dependent manner in addition to eIF3a-regulated expression of Raptor subunit in mTORC1. Taken together, our findings reveal a direct translational control of FASN-mediated fatty acid metabolism, suggesting a multi-level eIF3a regulatory paradigm on NER protein synthesis and activity during cancer cell response to cisplatin treatment.Item Emerging targets for glioblastoma stem cell therapy(JBR, 2015-09-20) Safa, Ahmad R.; Saadatzadeh, Mohammad Reza; Cohen-Gadol, Aaron A.; Pollok, Karen E.; Bijangi-Vishehsaraei, Khadijeh; Department of Pharmacology and Toxicology, IU School of MedicineGlioblastoma multiforme (GBM), designated as World Health Organization (WHO) grade IV astrocytoma, is a lethal and therapy-resistant brain cancer comprised of several tumor cell subpopulations, including GBM stem cells (GSCs) which are believed to contribute to tumor recurrence following initial response to therapies. Emerging evidence demonstrates that GBM tumors are initiated from GSCs. The development and use of novel therapies including small molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of GSCs, immunotherapy, and non-coding microRNAs may provide better means of treating GBM. Identification and characterization of GSC-specific signaling pathways would be necessary to identify specific therapeutic targets which may lead to the development of more efficient therapies selectively targeting GSCs. Several signaling pathways including mTOR, AKT, maternal embryonic leucine zipper kinase (MELK), NOTCH1 and Wnt/β-catenin as well as expression of cancer stem cell markers CD133, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain GSC properties. Moreover, the data published in the Cancer Genome Atlas (TCGA) specifically demonstrated the activated PI3K/AKT/mTOR pathway in GBM tumorigenesis. Studying such pathways may help to understand GSC biology and lead to the development of potential therapeutic interventions to render them more sensitive to chemotherapy and radiation therapy. Furthemore, recent demonstration of dedifferentiation of GBM cell lines into CSC-like cells prove that any successful therapeutic agent or combination of drugs for GBM therapy must eliminate not only GSCs, but the differentiated GBM cells and the entire bulk of tumor cells.Item Epithelial-mesenchymal transition: a hallmark in pancreatic cancer stem cell migration, metastasis formation, and drug resistance(OAE Publishing, 2020) Safa, Ahmad R.; Pharmacology and Toxicology, School of MedicineMetastasis, tumor progression, and chemoresistance are the major causes of death in patients with pancreatic ductal adenocarcinoma (PDAC). Tumor dissemination is associated with the activation of an epithelial-to-mesenchymal transition (EMT) process, a program by which epithelial cells lose their cell polarity and cell-to-cell adhesion, and acquire migratory and invasive abilities to become mesenchymal stem cells (MSC). These MSCs are multipotent stromal cells capable of differentiating into various cell types and trigger the phenotypic transition from an epithelial to a mesenchymal state. Therefore, EMT promotes migration and survival during cancer metastasis and confers stemness features to particular subsets of cells. Furthermore, a major problem limiting our ability to treat PDAC is the existence of rare populations of pancreatic cancer stem cells (PCSCs) or cancer-initiating cells in pancreatic tumors. PCSCs may represent sub-populations of tumor cells resistant to therapy which are most crucial for driving invasive tumor growth. These cells are capable of regenerating the cellular heterogeneity associated with the primary tumor when xenografted into mice. Therefore, the presence of PCSCs has prognostic relevance and influences the therapeutic response of tumors. PCSCs express markers of cancer stem cells (CSCs) including CD24, CD133, CD44, and epithelial specific antigen as well as the drug transporter ABCG2 grow as spheroids in a defined growth medium. A major difficulty in studying tumor cell dissemination and metastasis has been the identification of markers that distinguish metastatic cancer cells from cells that are normally circulating in the bloodstream or at sites where these cells metastasize. Evidence highlights a linkage between CSC and EMT. In this review, The current understanding of the PCSCs, signaling pathways regulating these cells, PDAC heterogeneity, EMT mechanism, and links between EMT and metastasis in PCSCs are summarised. This information may provide potential therapeutic strategies to prevent EMT and trigger CSC growth inhibition and cell death.
- «
- 1 (current)
- 2
- 3
- »