- Browse by Author
Browsing by Author "Sadove, A. Michael"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Craniofacial Morphology in familial cases of cleft lip/palate: phenotypic heterogeneity and genetic predisposition in unaffected family members(1993) Litz, Stephanie M.; Bixler, David; Fleener, Donald E.; Hennon, David Kent, 1933-; Sadove, A. Michael; Ward, Richard E.; Avery, David R.This study investigated familial cases of cleft lip with or without cleft palate to determine whether the unaffected members of each family can be identified as gene carriers for the cleft trait. This research presumes that such carriers will have henotypic features identifiable by cephalometric analysis that are associated with an increased risk to cleft offspring. Using population genetics methodology, a pedigree analysis was made for each family member was assigned to one of four groups: (1) obligate normal, (2) affected, (3) carrier, and (4) unknown. LA and PA cephalographs were taken on each subject and a clinical oral-facial examination carried out on participating family members. Various anatomic landmarks located on the LA and PA films were digitized and from them, a total of 28 linear measurements were made. To eliminate the effect of sex and differential age responses, Z scores were calculated. Through univariate analysis, only one variable, NCR-MO, was shown to be significantly different between the two groups. This variable difference by itself is not adequate to differentiate those in the normal group from the carrier group. Even though only one variable was significant, other differences in the variables between these groups become obvious when the group variables were plotted as Z scores. Since Z scores are pure values with no limits (2--the number of standard deviations in a given variable differs from normal). Thereby, age-related growth differences were minimized. Further information is gained when these Z scores are plotted as pattern profiles, Figures 5-7. These profiles of mean Z scores for each variable pointed out areas of the face in which the differences were so great that specific anatomic areas appeared to be associated with one of the four groups. For example, gene carriers demonstrated specific alterations in facial height that might conceivably be used to discriminate that group from the other three groups. The family normals and carriers were then analyzed by using a stepwise multivariate analysis. By this approach, a discriminant function was generated consisting of six variables (three each from the lateral and frontal headplates), which proved to be significant in distinguishing an individual's phenotype. These variables define facial height, width and depth. The specific findings included a decrease in mid-facial height and depth along with an increased lower facial height and width in the gene carrier population as compared to the normals. The function then was used to predict group membership of the same two groups. Comparing this analytical prediction to that of the grouping system that resulted from the pedigree analysis, all but one individual was classified correctly in both the normal and carrier population. A discriminant score was also determined for the unknown population of family members which were defined as non-cleft blood relatives of cleft probands. Thus, they were a mixture of two types--those unaffected who carried a genetic liability for producing a cleft child and those unaffected who did not. A prediction of their placement into either the normal or carrier group was made with the discriminate function. One-third were classed in the normal group and two-thirds as gene carriers. The results of this study confirm that the phenotype of these unaffected family members designated as obligate gene carriers differs significantly from that of the family normals. This information is not only quite useful for genetic counselling but gives both a better understanding or the genetic control of clefting and can lead to molecular research to identify the specific gene in question.Item Craniofacial pattern profile analysis of individuals with frontonasal malformation(1994) Hiester, John David, 1964-; Bixler, David; Hathaway, Ronald R.; Sadove, A. Michael; Shanks, James C.; Avery, David R.Frontonasal malformation, FNM, was first described by Hoppe in 1859. FNM is an anomaly that is characterized by ocular hypertelorism, broad nasal root, lack of a nasal tip, V-shaped hair, prolongation onto the forehead (widow's peak), anterior cranium bifidum occultum, median facial cleft affecting the nose, upper lip, and/or palate, and uni- or bilateral clefting of the ala nasi. The anomalies noted in FNM may be explained as a single malformation. If the nasal capsule fails to develop properly, the primitive brain vesicle fills the space normally occupied by the capsule, thus producing anterior cranium bifidum occultum, an arrest in the positioning of the eyes, and a lack of formation of the nasal tip. The condition presents clinically with variable expressions as sporadic cases and infrequently in familial cases. The present study is the first attempting to quantify and characterize FNM via anatomic radiographic measurements. The lateral (LA) and posterior-anterior (PA) cephalometric radiographs of twenty-four individuals, both sporadic and familial, with FNM were analyzed for comparison of linear and angular measurements with previously published data of a "normal," i.e. unaffected, population standard. Usual and customary cephalometric points were identified and located, then digitized into the computer. Twenty-nine measurements included the previously diagnosed anomalous features of hypertelorism, medial nasal cavity, and palatal shelves, as well as other facial features. The radiographs of individuals with FNM have anatomic features that are unusual and distinct to the specific malformation. The data from this research suggest that patients with FNM, regardless of a genetic or sporadic predisposition, have a midface deficiency in height and depth, an increased interorbital width with possible increased orbital socket width, and a longer zygomatic buttress. Also, the familial cases tend to have a flatter cranial base than the sporadic cases. Furthermore, the familial patients might be a different type of FNM since this subgroup shows narrower zygomatic widths. The patients with surgical procedures demonstrated improvement different from the growth of those patients who did not have surgery. The hypothesis that the facies of a patient with frontonasal malformation is different from the "normal" control population is supported by this research. The differences between the familial and sporadic patients tend to support the general theory that genetic predisposition is less severe than FNM that occurs randomly.Item Craniofacial Pattern Profile, Analysis of Individuals with Frontonasal Malformation(1994) Hiester, John David; Bixler, David; Avery, David R.; Hathaway, Ronald R.; Sadove, A. Michael; Shanks, James C.Frontonasal malformation, FNM, was first described by Hoppe in 1859. FNM is an anomaly that is characterized by ocular hypertelorism, broad nasal root, lack of a nasal tip, V-shaped hair prolongation onto the forehead (widow's peak), anterior cranium bifidum occultum, median facial cleft affecting the nose, upper lip, and/or palate, and uni- or bilateral clefting of the ala nasi. The anomalies noted in FNM may be explained as a single malformation. If the nasal capsule fails to develop properly, the primitive brain vesicle fills the space normally occupied by the capsule, thus producing anterior cranium bifidum occultum, an arrest in the positioning of the eyes, and a lack of formation of the nasal tip. The condition presents clinically with variable expressions as sporadic cases and infrequently in familial cases. The present study is the first attempting to quantify and characterize FNM via anatomic radiographic measurements. The lateral (LA) and posterior-anterior (PA) cephalometric radiographs of twenty-four individuals, both sporadic and familial, with FNM were analyzed for comparison of linear and angular measurements with previously published data of a "normal," i.e. unaffected, population standard. Usual and customary cephalometric points were identified and located, then digitized into the computer. Twenty-nine measurements included the previously diagnosed anomalous features of hypertelorism, medial nasal cavity, and palatal shelves, as well as other facial features. The radiographs of individuals with FNM have anatomic features that are unusual and distinct to the specific malformation. The data from this research suggest that patients with FNM, regardless of a genetic or sporadic predisposition, have a midface deficiency in height and depth, an increased interorbital width with possible increased orbital socket width, and a longer zygomatic buttress. Also, the familial cases tend to have a flatter cranial base than the sporadic cases. Furthermore, the familial patients might be a different type of FNM since this subgroup shows narrower zygomatic widths. The patients with surgical procedures demonstrated improvement different from the growth of those patients who did not have surgery. The hypothesis that the facies of a patient with frontonasal malformation is different from the "normal" control population is supported by this research. The differences between the familial and sporadic patients tend to support the general theory that genetic predisposition is less severe than FNM that occurs randomly.Item The effects of primary alvelar bone grafting on maxillary growth and development(1993) Tanimura, Leslie K.; Avery, David R.; Hennon, David Kent, 1933-; Nelson, Charles L.; Sadove, A. Michael; Branca, Ronald A.This investigation served as a follow-up of the unilateral and bilateral cleft lip and palate patients who underwent primary alveolar bone grafting at James Whitcomb Riley Hospital of the Indiana University Medical Center. The sample consisted of 18 patients, 15 males and three females, who received primary alveolar grafts between September 7, 1983 and March 5, 1985. Thirteen had complete unilateral clefts, and five had complete bilateral clefts of the lip and palate. The mean age of the group was 8 years, and none had received orthodontic treatment. The statistical analysis of the lateral cephalometric radiographs revealed significant differences in maxillofacial growth between the Riley sample population and the non-cleft, age-matched patients in the University of Michigan Growth Study. The Riley data were, overall, statistically and proportionately smaller than the normal population. These findings are due to the smaller skeletal size of the Riley group. Arch symmetry measurements indicated that at 8 years of age there were significant differences from ideal or perfect symmetry. Due to existent dental development and scarring from the palatal procedure, these findings were expected. Ideal symmetry may not be a realistic achievement for the cleft patients. Palatal surface area values were visually analyzed through graphs. The growth patterns of the Riley population were similar to those of the normal and non-grafted cleft groups in a study from the University of Miami. The data supports the theory that primary alveolar bone grafting, as performed at James Whitcomb Riley Hospital, does not result in growth attenuation.