- Browse by Author
Browsing by Author "Sacks, Harold S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Epicardial adipose excision slows the progression of porcine coronary atherosclerosis(Springer Nature, 2014-01-03) McKenney, Mikaela L.; Schultz, Kyle A.; Boyd, Jack H.; Byrd, James P.; Alloosh, Mouhamad; Teague, Shawn D.; Arce-Esquivel, Arturo A.; Fain, John N.; Laughlin, M. Harold; Sacks, Harold S.; Sturek, Michael; Cellular and Integrative Physiology, School of MedicineBackground: In humans there is a positive association between epicardial adipose tissue (EAT) volume and coronary atherosclerosis (CAD) burden. We tested the hypothesis that EAT contributes locally to CAD in a pig model. Methods: Ossabaw miniature swine (n=9) were fed an atherogenic diet for 6 months to produce CAD. A 15 mm length by 3-5 mm width coronary EAT (cEAT) resection was performed over the middle segment of the left anterior descending artery (LAD) 15 mm distal to the left main bifurcation. Pigs recovered for 3 months on atherogenic diet. Intravascular ultrasound (IVUS) was performed in the LAD to quantify atheroma immediately after adipectomy and was repeated after recovery before sacrifice. Coronary wall biopsies were stained immunohistochemically for atherosclerosis markers and cytokines and cEAT was assayed for atherosclerosis-related genes by RT-PCR. Total EAT volume was measured by non-contrast CT before each IVUS. Results: Circumferential plaque length increased (p<0.05) in the proximal and distal LAD segments from baseline until sacrifice whereas plaque length in the middle LAD segment underneath the adipectomy site did not increase. T-cadherin, scavenger receptor A and adiponectin were reduced in the intramural middle LAD. Relative to control pigs without CAD, 11β-hydroxysteroid dehydrogenase (11βHSD-1), CCL19, CCL21, prostaglandin D2 synthase, gp91phox [NADPH oxidase], VEGF, VEGFGR1, and angiotensinogen mRNAs were up-regulated in cEAT. EAT volume increased over 3 months. Conclusion: In pigs used as their own controls, resection of cEAT decreased the progression of CAD, suggesting that cEAT may exacerbate coronary atherosclerosis.Item Epicardial Adipose Tissue Removal Potentiates Outward Remodeling and Arrests Coronary Atherogenesis(Elsevier, 2017-05) McKenney-Drake, Mikaela L.; Rodenbeck, Stacey D.; Bruning, Rebecca S.; Kole, Ayeeshik; Yancey, Kyle W.; Alloosh, Mouhamad; Sacks, Harold S.; Sturek, Michael; Cellular and Integrative Physiology, School of MedicineBACKGROUND: Pericoronary epicardial adipose tissue (cEAT) serves as a metabolic and paracrine organ that contributes to inflammation and is associated with macrovascular coronary artery disease (CAD) development. Although there is a strong correlation in humans between cEAT volume and CAD severity, there remains a paucity of experimental data demonstrating a causal link of cEAT to CAD. The current study tested the hypothesis that surgical resection of cEAT attenuates inflammation and CAD progression. METHODS: Female Ossabaw miniature swine (n = 12) were fed an atherogenic diet for 8 months and randomly allocated into sham (n = 5) or adipectomy (n = 7) groups. Both groups underwent a thoracotomy, opening of the pericardial sac, and placement of radioopaque clips to mark the proximal left anterior descending artery. Adipectomy swine underwent removal of 1 to 1.5 cm2 of cEAT from the proximal artery. After sham or adipectomy, CAD severity was assessed with intravascular ultrasonography. Swine recovered for an additional 3 months on an atherogenic diet, and CAD was assessed immediately before euthanasia. Artery sections were processed for histologic and immunohistochemical analysis. RESULTS: Severity of CAD as assessed by percent stenosis was reduced in the adipectomy cohort compared with shams; however, plaque size remained unaltered, whereas larger plaque sizes developed in sham-operated swine. Adipectomy resulted in an expanded arterial diameter, similar to the Glagov phenomenon of positive outward remodeling. No differences in inflammatory marker expression were observed. CONCLUSIONS: These data indicate that cEAT resection did not alter inflammatory marker expression, but arrested CAD progression through increased positive outward remodeling and arrest of atherogenesis.