- Browse by Author
Browsing by Author "Sabbagh, Marwan N."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer disease: Phase 3 study(Elsevier, 2015) Sabri, Osama; Sabbagh, Marwan N.; Seibyl, John; Barthel, Henryk; Akatsu, Hiroyasu; Ouchi, Yasuomi; Senda, Kohei; Murayama, Shigeo; Ishii, Kenji; Takao, Masaki; Beach, Thomas G.; Rowe, Christopher C.; Leverenz, James B.; Ghetti, Bernardino; Ironside, James W.; Catafau, Ana M.; Stephens, Andrew W.; Mueller, Andre; Koglin, Norman; Hoffman, Anja; Roth, Katrin; Reininger, Cornelia; Schulz-Schaeffer, Walter J.; Department of Pathology and Laboratory Medicine, IU School of MedicineBackground Evaluation of brain β-amyloid by positron emission tomography (PET) imaging can assist in the diagnosis of Alzheimer disease (AD) and other dementias. Methods Open-label, nonrandomized, multicenter, phase 3 study to validate the 18F-labeled β-amyloid tracer florbetaben by comparing in vivo PET imaging with post-mortem histopathology. Results Brain images and tissue from 74 deceased subjects (of 216 trial participants) were analyzed. Forty-six of 47 neuritic β-amyloid-positive cases were read as PET positive, and 24 of 27 neuritic β-amyloid plaque-negative cases were read as PET negative (sensitivity 97.9% [95% confidence interval or CI 93.8–100%], specificity 88.9% [95% CI 77.0–100%]). In a subgroup, a regional tissue-scan matched analysis was performed. In areas known to strongly accumulate β-amyloid plaques, sensitivity and specificity were 82% to 90%, and 86% to 95%, respectively. Conclusions Florbetaben PET shows high sensitivity and specificity for the detection of histopathology-confirmed neuritic β-amyloid plaques and may thus be a valuable adjunct to clinical diagnosis, particularly for the exclusion of AD.Item Impact of Training Method on the Robustness of the Visual Assessment of 18F-Florbetaben PET Scans: Results from a Phase-3 Study(SNM, 2016-06) Seibyl, John; Catafau, Ana M.; Barthel, Henryk; Ishii, Kenji; Rowe, Christopher C.; Leverenz, James B.; Ghetti, Bernardino; Ironside, James W.; Takao, Masaki; Akatsu, Hiroyasu; Murayama, Shigeo; Bullich, Santiago; Mueller, Andre; Koglin, Norman; Schulz-Schaeffer, Walter J.; Hoffmann, Anja; Sabbagh, Marwan N.; Stephens, Andrew W.; Sabri, Osama; Department of Pathology & Laboratory Medicine, IU School of MedicineTraining for accurate image interpretation is essential for the clinical use of β-amyloid PET imaging, but the role of interpreter training and the accuracy of the algorithm for routine visual assessment of florbetaben PET scans are unclear. The aim of this study was to test the robustness of the visual assessment method for florbetaben scans, comparing efficacy readouts across different interpreters and training methods and against a histopathology standard of truth (SoT). Methods: Analysis was based on data from an international open-label, nonrandomized, multicenter phase-3 study in patients with or without dementia (ClinicalTrials.gov: NCT01020838). Florbetaben scans were assessed visually and quantitatively, and results were compared with amyloid plaque scores. For visual assessment, either in-person training (n = 3 expert interpreters) or an electronic training method (n = 5 naïve interpreters) was used. Brain samples from participants who died during the study were used to determine the histopathologic SoT using Bielschowsky silver staining (BSS) and immunohistochemistry for β-amyloid plaques. Results: Data were available from 82 patients who died and underwent postmortem histopathology. When visual assessment results were compared with BSS + immunohistochemistry as SoT, median sensitivity was 98.2% for the in-person–trained interpreters and 96.4% for the e-trained interpreters, and median specificity was 92.3% and 88.5%, respectively. Median accuracy was 95.1% and 91.5%, respectively. On the basis of BSS only as the SoT, median sensitivity was 98.1% and 96.2%, respectively; median specificity was 80.0% and 76.7%, respectively; and median accuracy was 91.5% and 86.6%, respectively. Interinterpreter agreement (Fleiss κ) was excellent (0.89) for in-person–trained interpreters and very good (0.71) for e-trained interpreters. Median intrainterpreter agreement was 0.9 for both in-person–trained and e-trained interpreters. Visual and quantitative assessments were concordant in 88.9% of scans for in-person–trained interpreters and in 87.7% of scans for e-trained interpreters. Conclusion: Visual assessment of florbetaben images was robust in challenging scans from elderly end-of-life individuals. Sensitivity, specificity, and interinterpreter agreement were high, independent of expertise and training method. Visual assessment was accurate and reliable for detection of plaques using BSS and immunohistochemistry and well correlated with quantitative assessments.Item Primary prevention recommendations to reduce the risk of cognitive decline(Wiley, 2022) Sabbagh, Marwan N.; Perez, Adriana; Holland, Thomas M.; Boustani, Malaz; Peabody, Stephanie R.; Yaffe, Kristine; Bruno, Michelle; Paulsen, Russell; O’Brien, Kelly; Wahid, Naila; Tanzi, Rudolph E.; Medicine, School of MedicineIntroduction: Few resources address steps clinicians can take to help patients reduce their risk of dementia, despite growing recognition that brain health can be optimized and that risk reduction for cognitive decline can be accomplished by lifestyle modifications. Methods: To address this gap, UsAgainstAlzheimer's convened a risk reduction workgroup (RRWG) to review existing evidence and develop recommendations for primary care clinicians discussing cognitive decline and risk reduction with their patients. Results: The RRWG produced 11 consensus‐based recommendations and implementation strategies across six topics: neurovascular risk management, physical activity, sleep, nutrition, social isolation, and cognitive stimulation. Discussion: These recommendations are a first step for clinicians to address brain health with patients and potentially help them prevent cognitive decline. To ensure there is routine care for brain health, proper incentives and policies must be instituted and more education for consumers should be provided.Item Targeting Tumor Necrosis Factor Alpha for Alzheimer's Disease(Bentham Science Publishers, 2017) Decourt, Boris; Lahiri, Debomoy K.; Sabbagh, Marwan N.; Psychiatry, School of MedicineAlzheimer's disease (AD) affects an estimated 44 million individuals worldwide, yet no therapeutic intervention is available to stop the progression of the dementia. Neuropathological hallmarks of AD are extracellular deposits of amyloid beta (Aβ) peptides assembled in plaques, intraneuronal accumulation of hyperphosphorylated tau protein forming tangles, and chronic inflammation. A pivotal molecule in inflammation is the pro-inflammatory cytokine TNF-α. Several lines of evidence using genetic and pharmacological manipulations indicate that TNF-α signaling exacerbates both Aβ and tau pathologies in vivo. Interestingly, preventive and intervention anti-inflammatory strategies demonstrated a reduction in brain pathology and an amelioration of cognitive function in rodent models of AD. Phase I and IIa clinical trials suggest that TNF-α inhibitors might slow down cognitive decline and improve daily activities in AD patients. In the present review, we summarize the evidence pointing towards a beneficial role of anti-TNF-α therapies to prevent or slow the progression of AD. We also present possible physical and pharmacological interventions to modulate TNF-α signaling in AD subjects along with their limitations.