- Browse by Author
Browsing by Author "Saadatzadeh, Mohammad R."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Anticancer peptides from induced tumor-suppressing cells for inhibiting osteosarcoma cells(e-Century, 2023-09-15) Cui, Chang-Peng; Huo, Qing-Ji; Xiong, Xue; Li, Ke-Xin; Ma, Peng; Qiang, Gui-Fen; Pandya, Pankita H.; Saadatzadeh, Mohammad R.; Vishehsaraei, Khadijeh Bijangi; Kacena, Melissa A.; Aryal, Uma K.; Pollok, Karen E.; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyOsteosarcoma (OS) is the most frequent primary bone cancer, which is mainly suffered by children and young adults. While the current surgical treatment combined with chemotherapy is effective for the early stage of OS, advanced OS preferentially metastasizes to the lung and is difficult to treat. Here, we examined the efficacy of ten anti-OS peptide candidates from a trypsin-digested conditioned medium that was derived from the secretome of induced tumor-suppressing cells (iTSCs). Using OS cell lines, the antitumor capabilities of the peptide candidates were evaluated by assaying the alterations in metabolic activities, proliferation, motility, and invasion of OS cells. Among ten candidates, peptide P05 (ADDGRPFPQVIK), a fragment of aldolase A (ALDOA), presented the most potent OS-suppressing capabilities. Its efficacy was additive with standard-of-care chemotherapeutic agents such as cisplatin and doxorubicin, and it downregulated oncoproteins such as epidermal growth factor receptor (EGFR), Snail, and Src in OS cells. Interestingly, P05 did not present inhibitory effects on non-OS skeletal cells such as mesenchymal stem cells and osteoblast cells. Collectively, this study demonstrated that iTSC-derived secretomes may provide a source for identifying anticancer peptides, and P05 may warrant further evaluations for the treatment of OS.