- Browse by Author
Browsing by Author "Ryu, Jong E."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Poly(sulfur-random-(1,3-diisopropenylbenzene)) Based Mid-Wavelength Infrared Polarizer: Optical Property Experimental and Theoretical Analysis(Elsevier, 2019-08) Berndt, Aaron J.; Hwang, Jehwan; Islam, Md Didarul; Sihn, Amy; Urbas, Augustine M.; Ku, Zahyun; Lee, Sang J.; Czaplewski, David A.; Dong, Mengyao; Shao, Qian; Wu, Shide; Guo, Zhanhu; Ryu, Jong E.; Mechanical and Energy Engineering, School of Engineering and TechnologyDevelopment of polymer based mid-wavelength infrared (MWIR) optics has been limited mainly due to high optical loss of organic polymers used in general optical components. In this study, a MWIR polarization grating based on a sulfuric polymer poly(sulfur-random-(1,3-diisopropenylbenzene)) with a low loss in the MWIR range was fabricated using a simple two-step process: imprint and metal deposition. Fourier-transform infrared (FTIR) spectroscopy measurement showed that this polymeric MWIR polarizer selectively transmitted the polarized IR in transverse magnetic (TM) mode over the transverse electric (TE) mode at normal incidence. The measured extinction ratios ( = The ratio of transmissions in TM and TE) were 208, 176, and 212 at the wavelength of 3, 4, and 5 μm, respectively. The computational simulation and analytical model confirmed that the enhanced TM transmission efficiency and followed a Fabry-Pérot (FP) resonance mode within the created sulfuric polymer film. This polymeric MWIR polarizer demonstrated a great potential for broader applications in IR photonics to realize low-cost and durable optical components.Item Reduction in Migratory Phenotype in a Metastasized Breast Cancer Cell Line via Downregulation of S100A4 and GRM3(Springer Nature, 2017-06-14) Chen, Andy; Wang, Luqi; Li, Bai-Yan; Sherman, Jesse; Ryu, Jong E.; Hamamura, Kazunori; Liu, Yunlong; Nakshatri, Harikrishna; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyTo investigate phenotypic and genotypic alterations before and after bone metastasis, we conducted genome-wide mRNA profiling and DNA exon sequencing of two cell lines (TMD and BMD) derived from a mouse xenograft model. TMD cells were harvested from the mammary fat pad after transfecting MDA-MB-231 breast cancer cells, while BMD cells were isolated from the metastasized bone. Compared to BMD cells, TMD cells exhibited higher cellular motility. In contrast, BMD cells formed a spheroid with a smoother and more circular surface when co-cultured with osteoblasts. In characterizing mRNA expression using principal component analysis, S100 calcium-binding protein A4 (S100A4) was aligned to a principal axis associated with metastasis. Partial silencing of S100A4 suppressed migratory capabilities of TMD cells, while Paclitaxel decreased the S100A4 level and reduced TMD's cellular motility. DNA mutation analysis revealed that the glutamate metabotropic receptor 3 (GRM3) gene gained a premature stop codon in BMD cells, and silencing GRM3 in TMD cells altered their spheroid shape closer to that of BMD cells. Collectively, this study demonstrates that metastasized cells are less migratory due in part to the post-metastatic downregulation of S100A4 and GRM3. Targeting S100A4 and GRM3 may help prevent bone metastasis.Item A study on the material characterization and finite element analysis of digital materials and their applications(2017-12) Lopez, Eduardo Salcedo; Ryu, Jong E.; Tovar, Andres; Wagner, DianeMaterial jetting (MJ) additive manufacturing (AM) has experienced an increased adoption in several industry areas and as well as research applications. One of MJ’s distinct benefits is the ability to print tunable composites, digital materials (DM) by carefully adjusting the ratio of droplets of heterogeneous base-polymeric inks. However, the lack of material information usable in computer simulations has hampered its acceptance in some end-use applications. For these materials to be used in Finite Element Analysis (FEA) simulations the mechanical properties of the DMs need to be characterized into usable material models. DMs printable with an MJ printer has a wide variety of materials properties, ranging from flexible silicone rubber to rigid Acrylonitrile Butadiene Styrene (ABS). Therefore, to cohesively express the mechanical behavior of the DMs it is necessary to utilize non-linear material models. The objective this research is to conduct physical testing to characterize the mechanical behavior of DMs printable with an MJ. Subsequently, to validate the effectiveness of the material models for multi-DM prints. Utilizing the newly characterized material models two use cases were investigated, with the goal of improving the performance of printed parts through simulation. In this study, an MJ printer was used to fabricate the test specimens as well as the components used in the use case studies. The study was focused on the family of six DMs printable from the mixture of the base polymers Tango Black+ (TB+) and Vero White+ (VW+). To characterize the mechanical properties of the materials a tensile test was conducted utilizing the KS-M6518 standard as a basis. The mechanical properties of the DMs were then fitted into four non-linear models and the results compared. The fitted models were, the Neo Hookean model, a two-parameter, three-parameter, and a five-parameter Mooney Rivlin model. To confidently use the material models for multi-DM prints FEA simulations need to validate the accuracy to which they can predict the deformation of the samples under load. To compare the results of the computer simulations and the physical test, strain maps for both results were analyzed. Four different test specimens were printed and tested. A baseline single material samples were compared to three multi-material samples with different embedded structures. The results confirmed the validity of the material models even when used for multi-DM prints. The recently characterized models are utilized in two use case studies which showcase the potential of DMs. The first use case was focused on printing multi-DM substrates for the use of stretchable electronics. The second use case investigated the benefits of utilizing multiple materials to create 3D conductive traces utilizing a new method, the “swollen-off” method. Both case studies showed the benefits of utilizing DMs as well as the applicability of the material models in predictive simulations.