- Browse by Author
Browsing by Author "Russell, Patrick M."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Excessive matrix metalloproteinase-1 and hyperactivation of endothelial cells occurred in COVID-19 patients and were associated with the severity of COVID-19(Cold Spring Harbor Laboratory Press, 2021-01) Syed, Fahim; Li, Wei; Relich, Ryan F.; Russell, Patrick M.; Zhang, Shanxiang; Zimmerman, Michelle K.; Yu, Qigui; Microbiology and Immunology, School of MedicineCOVID-19 starts as a respiratory disease that can progress to pneumonia, severe acute respiratory syndrome (SARS), and multi-organ failure. Growing evidence suggests that COVID-19 is a systemic illness that primarily injures the vascular endothelium, yet the underlying mechanisms remain unknown. SARS-CoV-2 infection is believed to trigger a cytokine storm that plays a critical role in the pathogenesis of endothelialitis and vascular injury, eventually leading to respiratory and multi-organ failure in COVID-19 patients. We used a multiplex immunoassay to systematically profile and compare 65 inflammatory cytokines/chemokines/growth factors in plasma samples from 24 hospitalized (severe/critical) COVID-19 patients, 14 mild/moderate cases, and 13 healthy controls (HCs). Patients with severe/critical and mild/moderate COVID-19 had significantly higher plasma levels of 20 analytes than HCs. Surprisingly, only one cytokine (MIF) was among these altered analytes, while the rest were chemokines and growth factors. In addition, only MMP-1 and VEGF-A were significantly elevated in hospitalized COVID-19 patients when compared to mild/moderate cases. Given that excessive MMP-1 plays a central role in tissue destruction in a wide variety of vascular diseases and that elevated VEGF-A, an EC activation marker, increases vascular permeability, we further studied MMP-1 enzymatic activity and other EC activation markers such as soluble forms of CD146, ICAM-1, and VCAM-1. We found that plasma MMP-1 enzymatic activity and plasma levels of MMP-1 and EC activation markers were highly dysregulated in COVID-19 patients. Some dysregulations were associated with patients’ age or gender, but not with race. Our results demonstrate that COVID-19 patients have distinct inflammatory profiles that are distinguished from the cytokine storms in other human diseases. Excessive MMP-1 and hyperactivation of ECs occur in COVID-19 patients and are associated with the severity of COVID-19.Item Serum from COVID-19 patients early in the pandemic shows limited evidence of cross-neutralization against variants of concern(Nature, 2022-03) Griffin, Amanda J.; O'Donnell, Kyle L.; Shifflet, Kyle; Lavik, John-Paul; Russell, Patrick M.; Zimmerman, Michelle K.; Relich, Ryan F.; Marzi, Andrea; Pathology and Laboratory Medicine, School of MedicineSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in a variety of clinical symptoms ranging from no or mild to severe disease. Currently, there are multiple postulated mechanisms that may push a moderate to severe disease into a critical state. Human serum contains abundant evidence of the immune status following infection. Cytokines, chemokines, and antibodies can be assayed to determine the extent to which a patient responded to a pathogen. We examined serum and plasma from a cohort of patients infected with SARS-CoV-2 early in the pandemic and compared them to negative-control sera. Cytokine and chemokine concentrations varied depending on the severity of infection, and antibody responses were significantly increased in severe cases compared to mild to moderate infections. Neutralization data revealed that patients with high titers against an early 2020 SARS-CoV-2 isolate had detectable but limited neutralizing antibodies against the emerging SARS-CoV-2 Alpha, Beta and Delta variants. This study highlights the potential of re-infection for recovered COVID-19 patients.Item Serum from COVID-19 patients early in the pandemic shows limited evidence of cross-neutralization against variants of concern(Springer Nature, 2022-03-10) Griffin, Amanda J.; O’Donnell, Kyle L.; Shifflett, Kyle; Lavik, John-Paul; Russell, Patrick M.; Zimmerman, Michelle K.; Relich, Ryan F.; Marzi, Andrea; Pathology and Laboratory Medicine, School of MedicineSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in a variety of clinical symptoms ranging from no or mild to severe disease. Currently, there are multiple postulated mechanisms that may push a moderate to severe disease into a critical state. Human serum contains abundant evidence of the immune status following infection. Cytokines, chemokines, and antibodies can be assayed to determine the extent to which a patient responded to a pathogen. We examined serum and plasma from a cohort of patients infected with SARS-CoV-2 early in the pandemic and compared them to negative-control sera. Cytokine and chemokine concentrations varied depending on the severity of infection, and antibody responses were significantly increased in severe cases compared to mild to moderate infections. Neutralization data revealed that patients with high titers against an early 2020 SARS-CoV-2 isolate had detectable but limited neutralizing antibodies against the emerging SARS-CoV-2 Alpha, Beta and Delta variants. This study highlights the potential of re-infection for recovered COVID-19 patients.Item Soluble Immune Checkpoints Are Dysregulated in COVID-19 and Heavy Alcohol Users With HIV Infection(Frontiers Media, 2022-02-23) Li, Wei; Syed, Fahim; Yu, Richard; Yang, Jing; Xia, Ying; Relich, Ryan F.; Russell, Patrick M.; Zhang, Shanxiang; Khalili, Mandana; Huang, Laurence; Kacena, Melissa A.; Zheng, Xiaoqun; Yu, Qigui; Microbiology and Immunology, School of MedicineImmune checkpoints (ICPs) consist of paired receptor-ligand molecules that exert inhibitory or stimulatory effects on immune defense, surveillance, regulation, and self-tolerance. ICPs exist in both membrane and soluble forms in vivo and in vitro. Imbalances between inhibitory and stimulatory membrane-bound ICPs (mICPs) in malignant cells and immune cells in the tumor immune microenvironment (TIME) have been well documented. Blockades of inhibitory mICPs have emerged as an immense breakthrough in cancer therapeutics. However, the origin, structure, production regulation, and biological significance of soluble ICPs (sICPs) in health and disease largely remains elusive. Soluble ICPs can be generated through either alternative mRNA splicing and secretion or protease-mediated shedding from mICPs. Since sICPs are found in the bloodstream, they likely form a circulating immune regulatory system. In fact, there is increasing evidence that sICPs exhibit biological functions including (1) regulation of antibacterial immunity, (2) interaction with their mICP compartments to positively or negatively regulate immune responses, and (3) competition with their mICP compartments for binding to the ICP blocking antibodies, thereby reducing the efficacy of ICP blockade therapies. Here, we summarize current data of sICPs in cancer and infectious diseases. We particularly focus on sICPs in COVID-19 and HIV infection as they are the two ongoing global pandemics and have created the world's most serious public health challenges. A "storm" of sICPs occurs in the peripheral circulation of COVID-19 patients and is associated with the severity of COVID-19. Similarly, sICPs are highly dysregulated in people living with HIV (PLHIV) and some sICPs remain dysregulated in PLHIV on antiretroviral therapy (ART), indicating these sICPs may serve as biomarkers of incomplete immune reconstitution in PLHIV on ART. We reveal that HIV infection in the setting of alcohol misuse exacerbates sICP dysregulation as PLHIV with heavy alcohol consumption have significantly elevated plasma levels of many sICPs. Thus, both stimulatory and inhibitory sICPs are present in the bloodstream of healthy people and their balance can be disrupted under pathophysiological conditions such as cancer, COVID-19, HIV infection, and alcohol misuse. There is an urgent need to study the role of sICPs in immune regulation in health and disease.