ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Russ, Kristen A."

Now showing 1 - 9 of 9
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Active Music Engagement and Cortisol as an Acute Stress Biomarker in Young Hematopoietic Stem Cell Transplant Patients and Caregivers: Results of a Single Case Design Pilot Study
    (Frontiers in Psychology, 2020-11) Holochwost, Steven J.; Robb, Sheri L.; Henley, Amanda K.; Stegenga, Kristin; Perkins, Susan M.; Russ, Kristen A.; Jacob, Seethal A.; Delgado, David; Haase, Joan E.; Krater, Caitlin M.; Medicine, School of Medicine
    This paper reports the results of a single case design pilot study of a music therapy intervention (the Active Music Engagement, or AME) for young children undergoing hematopoietic stem cell transplantation (HCST) and their caregivers. The primary aims of the study were to determine feasibility/acceptability of the AME intervention protocol and data collection in the context of HCST. Secondary aims were to examine caregivers’ perceptions of the benefit of AME and whether there were changes in child and caregiver cortisol levels relative to the AME intervention. Results indicated that the AME could be implemented in this context and that data could be collected, though the collection of salivary cortisol may constitute an additional burden for families. Nevertheless, data that were collected suggest that families derive benefit from the AME, which underscores the need for devising innovative methods to understand the neurophysiological impacts of the AME.
  • Loading...
    Thumbnail Image
    Item
    Alzheimer’s Disease Plasma Biomarker Results from across 14 Alzheimer’s Disease Research Centers
    (Wiley, 2025-01-09) Russ, Kristen A.; Asthana, Sanjay; Johnson, Sterling C.; Wilson, Rachael E.; Craft, Suzanne; Register, Thomas C.; Lockhart, Samuel N.; Nairn, Angus C.; Strittmatter, Stephen M.; van Dyck, Christopher H.; Foroud, Tatiana M.; Dage, Jeffrey L.; Neurology, School of Medicine
    Background: The Alzheimer’s Disease Center Fluid Biomarker (ADCFB) Initiative samples are analyzed centrally at NCRAD for AD plasma biomarkers. When combining NACC accessible data from across centers, biofluid biomarker data must be evaluated carefully. This will become more critical with the implementation of disease modifying therapies. Methods: Beta amyloid 1‐42 (Aβ42) and beta amyloid 1‐40 (Aβ40) were analyzed utilizing the Neurology 4‐Plex E kits on a Quanterix Simoa HD‐X. All assays were performed according to manufacturer’s instructions. NACC data from participants 65 or older was combined with biomarker results into one data set. Samples with PET results from the same visit as the blood collection were utilized for this analysis (n=114). Results: Data for amyloid and tau PET was used along with Aβ42/40 ratios to assess the area under the curve (AUC) for this data set (Figure 1). Amyloid PET and Tau PET by Aβ42/40 ROC analysis including age and APOE4 carrier status showed lower than expected AUCs (both 0.72). A subset of data (n=90) was analyzed using participants that were not on any FDA‐approved drugs for AD. This had no effect on AUCs for amyloid or tau PET by Aβ42/40 ratios. Distribution of Aβ42/40 ratios across sites showed a single site had a subset of very high Aβ42/40 ratios (n=8) in comparison to other sites. After removal of the Aβ42/40 outliers from the specific site from the data set, diagnostic accuracies of Aβ42/40 for both Amyloid PET (AUC=0.77) and Tau PET (AUC=0.76) were increased. More investigation into the exact cause of the outliers is necessary, but Aβ42/40 elevations independent from other biomarkers have been seen in clinical trials of Solanezumab and some other Aβ targeting antibodies. Conclusion: To avoid errors in data analysis when using shared data, it is important to track clinical trial co‐enrollment and drug type within ADCs at NACC. As FDA‐approved treatments become available or co‐enrollment of AD drug trials at centers occurs, it is critical to carefully track participant variables and review biofluid biomarker data when it is being combined across centers or studies.
  • Loading...
    Thumbnail Image
    Item
    Asian Cohort for Alzheimer's Disease (ACAD) pilot study on genetic and non-genetic risk factors for Alzheimer's disease among Asian Americans and Canadians
    (Wiley, 2024) Ho, Pei-Chuan; Yu, Wai Haung; Tee, Boon Lead; Lee, Wan-Ping; Li, Clara; Gu, Yian; Yokoyama, Jennifer S.; Reyes-Dumeyer, Dolly; Choi, Yun-Beom; Yang, Hyun-Sik; Vardarajan, Badri N.; Tzuang, Marian; Lieu, Kevin; Lu, Anna; Faber, Kelley M.; Potter, Zoë D.; Revta, Carolyn; Kirsch, Maureen; McCallum, Jake; Mei, Diana; Booth, Briana; Cantwell, Laura B.; Chen, Fangcong; Chou, Sephera; Clark, Dewi; Deng, Michelle; Hong, Ting Hei; Hwang, Ling-Jen; Jiang, Lilly; Joo, Yoonmee; Kang, Younhee; Kim, Ellen S.; Kim, Hoowon; Kim, Kyungmin; Kuzma, Amanda B.; Lam, Eleanor; Lanata, Serggio C.; Lee, Kunho; Li, Donghe; Li, Mingyao; Li, Xiang; Liu, Chia-Lun; Liu, Collin; Liu, Linghsi; Lupo, Jody-Lynn; Nguyen, Khai; Pfleuger, Shannon E.; Qian, James; Qian, Winnie; Ramirez, Veronica; Russ, Kristen A.; Seo, Eun Hyun; Song, Yeunjoo E.; Tartaglia, Maria Carmela; Tian, Lu; Torres, Mina; Vo, Namkhue; Wong, Ellen C.; Xie, Yuan; Yau, Eugene B.; Yi, Isabelle; Yu, Victoria; Zeng, Xiaoyi; St. George-Hyslop, Peter; Au, Rhoda; Schellenberg, Gerard D.; Dage, Jeffrey L.; Varma, Rohit; Hsiung, Ging-Yuek R.; Rosen, Howard; Henderson, Victor W.; Foroud, Tatiana; Kukull, Walter A.; Peavy, Guerry M.; Lee, Haeok; Feldman, Howard H.; Mayeux, Richard; Chui, Helena; Jun, Gyungah R.; Ta Park, Van M.; Chow, Tiffany W.; Wang, Li-San; Medical and Molecular Genetics, School of Medicine
    Introduction: Clinical research in Alzheimer's disease (AD) lacks cohort diversity despite being a global health crisis. The Asian Cohort for Alzheimer's Disease (ACAD) was formed to address underrepresentation of Asians in research, and limited understanding of how genetics and non-genetic/lifestyle factors impact this multi-ethnic population. Methods: The ACAD started fully recruiting in October 2021 with one central coordination site, eight recruitment sites, and two analysis sites. We developed a comprehensive study protocol for outreach and recruitment, an extensive data collection packet, and a centralized data management system, in English, Chinese, Korean, and Vietnamese. Results: ACAD has recruited 606 participants with an additional 900 expressing interest in enrollment since program inception. Discussion: ACAD's traction indicates the feasibility of recruiting Asians for clinical research to enhance understanding of AD risk factors. ACAD will recruit > 5000 participants to identify genetic and non-genetic/lifestyle AD risk factors, establish blood biomarker levels for AD diagnosis, and facilitate clinical trial readiness. Highlights: The Asian Cohort for Alzheimer's Disease (ACAD) promotes awareness of under-investment in clinical research for Asians. We are recruiting Asian Americans and Canadians for novel insights into Alzheimer's disease. We describe culturally appropriate recruitment strategies and data collection protocol. ACAD addresses challenges of recruitment from heterogeneous Asian subcommunities. We aim to implement a successful recruitment program that enrolls across three Asian subcommunities.
  • Loading...
    Thumbnail Image
    Item
    Associations among plasma, MRI, and amyloid PET biomarkers of Alzheimer's disease and related dementias and the impact of health‐related comorbidities in a community‐dwelling cohort
    (Wiley, 2024) Rudolph, Marc D.; Sutphen, Courtney L.; Register, Thomas C.; Whitlow, Christopher T.; Solingapuram Sai, Kiran K.; Hughes, Timothy M.; Bateman, James R.; Dage, Jeffrey L.; Russ, Kristen A.; Mielke, Michelle M.; Craft, Suzanne; Lockhart, Samuel N.; Neurology, School of Medicine
    Introduction: We evaluated associations between plasma and neuroimaging-derived biomarkers of Alzheimer's disease and related dementias and the impact of health-related comorbidities. Methods: We examined plasma biomarkers (neurofilament light chain, glial fibrillary acidic protein, amyloid beta [Aβ] 42/40, phosphorylated tau 181) and neuroimaging measures of amyloid deposition (Aβ-positron emission tomography [PET]), total brain volume, white matter hyperintensity volume, diffusion-weighted fractional anisotropy, and neurite orientation dispersion and density imaging free water. Participants were adjudicated as cognitively unimpaired (CU; N = 299), mild cognitive impairment (MCI; N = 192), or dementia (DEM; N = 65). Biomarkers were compared across groups stratified by diagnosis, sex, race, and APOE ε4 carrier status. General linear models examined plasma-imaging associations before and after adjusting for demographics (age, sex, race, education), APOE ε4 status, medications, diagnosis, and other factors (estimated glomerular filtration rate [eGFR], body mass index [BMI]). Results: Plasma biomarkers differed across diagnostic groups (DEM > MCI > CU), were altered in Aβ-PET-positive individuals, and were associated with poorer brain health and kidney function. Discussion: eGFR and BMI did not substantially impact associations between plasma and neuroimaging biomarkers. Highlights: Plasma biomarkers differ across diagnostic groups (DEM > MCI > CU) and are altered in Aβ-PET-positive individuals. Altered plasma biomarker levels are associated with poorer brain health and kidney function. Plasma and neuroimaging biomarker associations are largely independent of comorbidities.
  • Loading...
    Thumbnail Image
    Item
    Cortisol as an Acute Stress Biomarker in Young Hematopoietic Cell Transplant Patients/Caregivers: Active Music Engagement Protocol
    (Mary Ann Liebert, 2020-05-11) Russ, Kristen A.; Holochwost, Steven J.; Perkins, Susan M.; Stegenga, Kristin; Jacob, Seethal A.; Delgado, David; Henley, Amanda K.; Haase, Joan E.; Robb, Sheri L.; Medicine, School of Medicine
    Objective: Primary aims of the proposed protocol are to determine the feasibility/acceptability of the active music engagement intervention protocol during hematopoietic stem cell transplantation (HSCT) and clinical feasibility/acceptability of the biological sample collection schedule. Design: The authors propose a single-case, alternating treatment design to compare levels of child and caregiver cortisol in blood and saliva collected on alternating days, when the dyad receives and does not receive AME sessions. Included are the scientific rationale for this design and detailed intervention and sample collection schedules based on transplant type. Setting/Location: Pediatric inpatient HSCT unit. Subjects: Eligible participants are dyads of children 3-8 years old, hospitalized for HSCT, and their caregiver. Children with malignant and nonmalignant conditions will be eligible, regardless of transplant type. Intervention: AME intervention is delivered by a board-certified music therapist who tailors music-based play experiences to encourage active engagement in, and independent use of, music play to manage the inter-related emotional distress experienced by children and their caregivers during HSCT. Dyads will receive two 45-min AME sessions each week during hospitalization. Outcome Measures: Eight collections of blood (child) and saliva (child/caregiver) will be performed for cortisol measurement. The authors will also collect self-report and caregiver proxy measures for dyad emotional distress, quality of life, and family function. At study conclusion, qualitative caregiver interviews will be conducted. Results: Planned analyses will be descriptive and evaluate the feasibility of participant recruitment, cortisol collection, planned evaluations, and AME delivery. Analysis of qualitative interviews will be used to gain an understanding about the ease/burden of biological sample collection and any perceived benefit of AME. Conclusions: Behavioral intervention studies examining biological mechanisms of action in pediatric transplant populations are rare. Findings will provide important information about the feasibility/acceptability of collecting cortisol samples during a high-intensity treatment and advance understanding about the use of active music interventions to mitigate child/caregiver distress during the transplant period.
  • Loading...
    Thumbnail Image
    Item
    Molecular and clinical effects of aromatase inhibitor therapy on skeletal muscle function in early-stage breast cancer
    (Springer Nature, 2024-01-10) Seibert, Tara A.; Shi, Lei; Althouse, Sandra; Hoffman, Richard; Schneider, Bryan P.; Russ, Kristen A.; Altherr, Cody A.; Warden, Stuart J.; Guise, Theresa A.; Coggan, Andrew R.; Ballinger, Tarah J.; Exercise & Kinesiology, School of Health and Human Sciences
    We evaluated biochemical changes in skeletal muscle of women with breast cancer initiating aromatase inhibitors (AI), including oxidation of ryanodine receptor RyR1 and loss of stabilizing protein calstabin1, and detailed measures of muscle function. Fifteen postmenopausal women with stage I–III breast cancer planning to initiate AI enrolled. Quadriceps muscle biopsy, dual-energy x-ray absorptiometry, isokinetic dynamometry, Short Physical Performance Battery, grip strength, 6-min walk, patient-reported outcomes, and serologic measures of bone turnover were assessed before and after 6 months of AI. Post-AI exposure, oxidation of RyR1 significantly increased (0.23 ± 0.37 vs. 0.88 ± 0.80, p < 0.001) and RyR1-bound calstabin1 significantly decreased (1.69 ± 1.53 vs. 0.74 ± 0.85, p < 0.001), consistent with dysfunctional calcium channels in skeletal muscle. Grip strength significantly decreased at 6 months. No significant differences were seen in isokinetic dynamometry measures of muscle contractility, fatigue resistance, or muscle recovery post-AI exposure. However, there was significant correlation between oxidation of RyR1 with muscle power (r = 0.60, p = 0.02) and muscle fatigue (r = 0.57, p = 0.03). Estrogen deprivation therapy for breast cancer resulted in maladaptive changes in skeletal muscle, consistent with the biochemical signature of dysfunctional RyR1 calcium channels. Future studies will evaluate longer trajectories of muscle function change and include other high bone turnover states, such as bone metastases.
  • Loading...
    Thumbnail Image
    Item
    NQO1-Bioactivatable Therapeutics as Radiosensitizers for Cancer Treatment
    (IntechOpen, 2020) Singh, Naveen; Motea, Edward A.; Huang, Xiumei; Starcher, Colton L.; Silver, Jayne; Yeh, I-Ju; Pay, S. Louise; Su, Xiaolin; Russ, Kristen A.; Boothman, David A.; Bey, Erik A.; Biochemistry and Molecular Biology, School of Medicine
    Developing cancer therapeutics that radiosensitize in a tumor-selective manner remains an ideal. We developed a novel means of radiosensitization, exploiting NAD(P)H:Quinone Oxidoreductase 1 (NQO1) overexpression, and lowered catalase expression in solid human tumors using NQO1-bioactivatable drugs. Non-small cell lung (NSCLC), pancreatic (PDAC), prostate, and breast cancers overexpress NQO1. Ionizing radiation (IR) creates a spectrum of DNA lesions, including lethal DNA double-strand breaks (DSBs), and mutagenic but rarely lethal altered DNA bases and DNA single-strand breaks (SSBs). NQO1-bioactivatable drugs (e.g., β-lapachone and deoxynyboquiones) also promote abasic DNA lesions and SSBs. These hyperactivate poly (ADP-ribose) polymerase 1 (PARP1) and dramatically increase calcium release from the endoplasm reticulum (ER). Exposure of human cancer cells overexpressing NQO1 to NQO1-bioactivatable drugs immediately following IR, therefore, hyperactivates PARP1 synergistically, which in turn depletes NAD+ and ATP, inhibiting DSB repair. Ultimately, this leads to cell death. Combining IR with NQO1-bioactivatable drugs allows for a reduction in drug dose. Similarly, a lower IR dose can be used in combination with the drug, reducing the effects of IR on normal tissue. The combination treatment is effective in preclinical animal models with NSCLC, prostate, and head and neck xenografts, indicating that clinical trials are warranted.
  • Loading...
    Thumbnail Image
    Item
    NQO1-Bioactivatable Therapeutics as Radiosensitizers for Cancer Treatment
    (InTechOpen, 2020-02-13) Singh, Naveen; Motea, Edward A.; Huang, Xiumei; Starcher, Colton L.; Silver, Jayne; Yeh, I.-Ju; Pay, S. Louise; Su, Xiaolin; Russ, Kristen A.; Boothman, David A.; Bey, Erik A.; Biochemistry and Molecular Biology, School of Medicine
    Developing cancer therapeutics that radiosensitize in a tumor-selective manner remains an ideal. We developed a novel means of radiosensitization, exploiting NAD(P)H:Quinone Oxidoreductase 1 (NQO1) overexpression, and lowered catalase expression in solid human tumors using NQO1-bioactivatable drugs. Non-small cell lung (NSCLC), pancreatic (PDAC), prostate, and breast cancers overexpress NQO1. Ionizing radiation (IR) creates a spectrum of DNA lesions, including lethal DNA double-strand breaks (DSBs), and mutagenic but rarely lethal altered DNA bases and DNA single-strand breaks (SSBs). NQO1-bioactivatable drugs (e.g., β-lapachone and deoxynyboquiones) also promote abasic DNA lesions and SSBs. These hyperactivate poly (ADP-ribose) polymerase 1 (PARP1) and dramatically increase calcium release from the endoplasm reticulum (ER). Exposure of human cancer cells overexpressing NQO1 to NQO1-bioactivatable drugs immediately following IR, therefore, hyperactivates PARP1 synergistically, which in turn depletes NAD+ and ATP, inhibiting DSB repair. Ultimately, this leads to cell death. Combining IR with NQO1-bioactivatable drugs allows for a reduction in drug dose. Similarly, a lower IR dose can be used in combination with the drug, reducing the effects of IR on normal tissue. The combination treatment is effective in preclinical animal models with NSCLC, prostate, and head and neck xenografts, indicating that clinical trials are warranted.
  • Loading...
    Thumbnail Image
    Item
    Protocol and biomarker strategy for a multi-site randomized controlled trial examining biological mechanisms and dosing of active music engagement in children with acute lymphoblastic leukemia and lymphoma and parents
    (BMC, 2023-03-27) Robb, Sheri L.; Russ, Kristen A.; Holochwost, Steven J.; Stegenga, Kristin; Perkins, Susan M.; Jacob, Seethal A.; Henley, Amanda K.; MacLean, Jessica A.; School of Nursing
    Background: Music therapy is a standard palliative care service in many pediatric and adult hospitals; however, most research has focused on the use of music to improve psychosocial dimensions of health, without considering biological dimensions. This study builds on prior work examining psychosocial mechanisms of action underlying an Active Music Engagement (AME) intervention, designed to help manage emotional distress and improve positive health outcomes in young children with cancer and parents (caregivers), by examining its effects on biomarkers of stress and immune function. Methods: This two-group randomized controlled trial (R01NR019190) is designed to examine biological mechanisms of effect and dose-response relationships of AME on child/parent stress during the consolidation phase of Acute B- or T-cell Lymphoblastic Leukemia (ALL) and T-cell Lymphoblastic Lymphoma (TLyLy) treatment. Child/parent dyads (n = 228) are stratified (by age, site, risk level) and randomized in blocks of four to the AME or attention control condition. Each group receives one session (30-minutes AME; 20-minutes control) during weekly clinic visits (4 weeks standard risk B-cell ALL; 8 weeks high risk B-cell ALL/T-cell ALL/TLyLy). Parents complete questionnaires at baseline and post-intervention. Child/parent salivary cortisol samples are taken pre- and post-session (sessions 1-4). Child blood samples are reserved from routine draws before sessions 1 and 4 (all participants) and session 8 (high risk participants). We will use linear mixed models to estimate AME's effect on child/parent cortisol. Examining child/parent cortisol as mediators of AME effects on child and parent outcomes will be performed in an ANCOVA setting, fitting the appropriate mediation models using MPlus and then testing indirect effects using the percentile bootstrap approach. Graphical plots and non-linear repeated measures models will be used to examine dose-response relationship of AME on child/parent cortisol. Discussion: During pediatric cancer treatment there are special challenges that must be considered when measuring cortisol and immune function. In this manuscript we discuss how we addressed three specific challenges through our trial design. Findings from this trial will increase mechanistic understanding of the effects of active music interventions on multiple biomarkers and understanding of dose-response effects, with direct implications for clinical practice.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University