- Browse by Author
Browsing by Author "Ruggiero, Salvatore"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Clinically aggressive central giant cell granulomas in two patients with neurofibromatosis 1(2006-12) Edwards, Paul C.; Fantasia, John E; Saini, Tamjit; Rosenberg, Tracey J; Sachs, Stephen A; Ruggiero, SalvatoreBackground Neurofibromatosis 1 (NF1) is an autosomal dominantly inherited disorder caused by a spectrum of mutations affecting the Nf1 gene. Affected patients develop benign and malignant tumors at an increased frequency. Clinical findings include multiple cutaneous café-au-lait pigmentations, neurofibromas, axillary freckling, optic gliomas, benign iris hamartomas (Lisch nodules), scoliosis, and poorly defined soft tissue lesions of the skeleton. Kerl first reported an association of NF1 with multiple central giant cell granulomas (CGCGs) of the jaws. There have since been 4 additional published cases of NF1 patients with CGCGs of the jaws. Clinical cases We report on 2 patients who presented with NF1 and aggressive CGCGs of the jaws. In both cases, the clinical course was characterized by numerous recurrences despite mechanical curettage and surgical resection. Conclusions We review proposed mechanisms to explain the apparent association between NF1 and an increased incidence of CGCGs of the jaws. While the presence of CGCGs of the jaws in patients with NF1 could represent either a coincidental association or a true genetic linkage, we propose that this phenomenon is most likely related to NF1-mediated osseous dysplasia. Compared to normal bone, the Nf1-haploinsufficient bone in a patient with NF1 may be less able to remodel in response to as of yet unidentified stimuli (e.g. excessive mechanical stress and/or vascular fragility), and consequently may be more susceptible to developing CGCG-like lesions. Alternatively, the CGCG in NF1 patients could represent a true neoplasm, resulting from additional, as of yet unidentified, genetic alterations to Nf1-haploinsufficient bone.Item Sonic hedgehog gene-enhanced tissue engineering for bone regeneration(2004-10) Edwards, Paul C.; Ruggiero, Salvatore; Fantasia, John; Burakoff, Ronald; Moorji, Sameer; Razzano, Pasquale; Grande, Daniel A; Mason, James MImproved methods of bone regeneration are needed in the craniofacial rehabilitation of patients with significant bone deficits secondary to tumor resection, congenital deformities, and prior to prosthetic dental reconstruction. In this study, a gene-enhanced tissue-engineering approach was used to assess bone regenerative capacity of Sonic hedgehog (Shh)-transduced gingival fibroblasts, mesenchymal stem cells, and fat-derived cells delivered to rabbit cranial bone defects in an alginate/collagen matrix. Human Shh cDNA isolated from fetal lung tissue was cloned into the replication-incompetent retroviral expression vector LNCX, in which the murine leukemia virus retroviral LTR drives expression of the neomycin-resistance gene. The rat beta-actin enhancer/promoter complex was engineered to drive expression of Shh. Reverse transcriptase-polymerase chain reaction analysis demonstrated that the transduced primary rabbit cell populations expressed Shh RNA. Shh protein secretion was confirmed by enzyme-linked immunosorbent assay (ELISA). Alginate/ type I collagen constructs containing 2 times 106 Shh-transduced cells were introduced into male New Zealand White rabbit calvarial defects (8 mm). A total of eight groups (N=6) were examined: unrestored empty defects, matrix alone, matrix plus the three cell populations transduced with both control and Shh expression vectors. The bone regenerative capacity of Shh gene enhanced cells was assessed grossly, radiographically and histologically at 6 and 12 weeks postimplantation. After 6 weeks, new full thickness bone was seen emanating directly from the alginate/collagen matrix in the Shh-transduced groups. Quantitative two-dimensional digital analysis of histological sections confirmed statistically significant (P<0.05) amounts of bone regeneration in all three Shh-enhanced groups compared to controls. Necropsy failed to demonstrate any evidence of treatment-related side effects. This is the first study to demonstrate that Shh delivery to bone defects, in this case through a novel gene-enhanced tissue-engineering approach, results in significant bone regeneration. This encourages further development of the Shh gene-enhanced tissue-engineering approach for bone regeneration.