ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Rubinski, Anna"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    KL-VS heterozygosity is associated with lower amyloid-dependent tau accumulation and memory impairment in Alzheimer’s disease
    (Springer Nature, 2021-06-22) Neitzel, Julia; Franzmeier, Nicolai; Rubinski, Anna; Dichgans, Martin; Brendel, Matthias; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Malik, Rainer; Ewers, Michael; Radiology and Imaging Sciences, School of Medicine
    Klotho-VS heterozygosity (KL-VShet) is associated with reduced risk of Alzheimer's disease (AD). However, whether KL-VShet is associated with lower levels of pathologic tau, i.e., the key AD pathology driving neurodegeneration and cognitive decline, is unknown. Here, we assessed the interaction between KL-VShet and levels of beta-amyloid, a key driver of tau pathology, on the levels of PET-assessed neurofibrillary tau in 551 controls and patients across the AD continuum. KL-VShet showed lower cross-sectional and longitudinal increase in tau-PET per unit increase in amyloid-PET when compared to that of non-carriers. This association of KL-VShet on tau-PET was stronger in Klotho mRNA-expressing brain regions mapped onto a gene expression atlas. KL-VShet was related to better memory functions in amyloid-positive participants and this association was mediated by lower tau-PET. Amyloid-PET levels did not differ between KL-VShet carriers versus non-carriers. Together, our findings provide evidence to suggest a protective role of KL-VShet against amyloid-related tau pathology and tau-related memory impairments in elderly humans at risk of AD dementia.
  • Loading...
    Thumbnail Image
    Item
    Segregation of functional networks is associated with cognitive resilience in Alzheimer's disease
    (Oxford University Press, 2021) Ewers, Michael; Luan, Ying; Frontzkowski, Lukas; Neitzel, Julia; Rubinski, Anna; Dichgans, Martin; Hassenstab, Jason; Gordon, Brian A.; Chhatwal, Jasmeer P.; Levin, Johannes; Schofield, Peter; Benzinger, Tammie L.S; Morris, John C.; Goate, Alison; Karch, Celeste M.; Fagan, Anne M.; McDade, Eric; Allegri, Ricardo; Berman, Sarah; Chui, Helena; Cruchaga, Carlos; Farlow, Marty; Graff-Radford, Neill; Jucker, Mathias; Lee, Jae-Hong; Martins, Ralph N.; Mori, Hiroshi; Perrin, Richard; Xiong, Chengjie; Rossor, Martin; Fox, Nick C.; O’Connor, Antoinette; Salloway, Stephen; Danek, Adrian; Buerger, Katharina; Bateman, Randall J.; Habeck, Christian; Stern, Yaakov; Franzmeier, Nicolai; Alzheimer’s Disease Neuroimaging Initiative; Dominantly Inherited Alzheimer Network; Neurology, School of Medicine
    Cognitive resilience is an important modulating factor of cognitive decline in Alzheimer's disease, but the functional brain mechanisms that support cognitive resilience remain elusive. Given previous findings in normal ageing, we tested the hypothesis that higher segregation of the brain's connectome into distinct functional networks represents a functional mechanism underlying cognitive resilience in Alzheimer's disease. Using resting-state functional MRI, we assessed both resting-state functional MRI global system segregation, i.e. the balance of between-network to within-network connectivity, and the alternate index of modularity Q as predictors of cognitive resilience. We performed all analyses in two independent samples for validation: (i) 108 individuals with autosomal dominantly inherited Alzheimer's disease and 71 non-carrier controls; and (ii) 156 amyloid-PET-positive subjects across the spectrum of sporadic Alzheimer's disease and 184 amyloid-negative controls. In the autosomal dominant Alzheimer's disease sample, disease severity was assessed by estimated years from symptom onset. In the sporadic Alzheimer's sample, disease stage was assessed by temporal lobe tau-PET (i.e. composite across Braak stage I and III regions). In both samples, we tested whether the effect of disease severity on cognition was attenuated at higher levels of functional network segregation. For autosomal dominant Alzheimer's disease, we found higher functional MRI-assessed system segregation to be associated with an attenuated effect of estimated years from symptom onset on global cognition (P = 0.007). Similarly, for patients with sporadic Alzheimer's disease, higher functional MRI-assessed system segregation was associated with less decrement in global cognition (P = 0.001) and episodic memory (P = 0.004) per unit increase of temporal lobe tau-PET. Confirmatory analyses using the alternate index of modularity Q revealed consistent results. In conclusion, higher segregation of functional connections into distinct large-scale networks supports cognitive resilience in Alzheimer's disease.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University