- Browse by Author
Browsing by Author "Roy, Pierre-Marie"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Derivation and Validation of a 4-Level Clinical Pretest Probability Score for Suspected Pulmonary Embolism to Safely Decrease Imaging Testing(JAMA, 2021-06-01) Roy, Pierre-Marie; Friou, Emilie; Germeau, Boris; Douillet, Delphine; Kline, Jeffrey A.; Righini, Marc; Le Gal, Grégoire; Moumneh, Thomas; Penaloza, Andrea; Emergency Medicine, School of MedicineImportance: In patients with suspected pulmonary embolism (PE), overuse of diagnostic imaging is an important point of concern. Objective: To derive and validate a 4-level pretest probability rule (4-Level Pulmonary Embolism Clinical Probability Score [4PEPS]) that makes it possible to rule out PE solely on clinical criteria and optimized D-dimer measurement to safely decrease imaging testing for suspected PE. Design, setting, and participants: This study included consecutive outpatients suspected of having PE from US and European emergency departments. Individual data from 3 merged management studies (n = 11 114; overall prevalence of PE, 11%) were used for the derivation cohort and internal validation cohort. The external validation cohorts were taken from 2 independent studies, the first with a high PE prevalence (n = 1548; prevalence, 21.5%) and the second with a moderate PE prevalence (n = 1669; prevalence, 11.7%). A prior definition of pretest probability target values to achieve a posttest probability less than 2% was used on the basis of the negative likelihood ratios of D-dimer. Data were collected from January 2003 to April 2016, and data were analyzed from June 2018 to August 2019. Main outcomes and measures: The rate of PE diagnosed during the initial workup or during follow-up and the rate of imaging testing. Results: Of the 5588 patients in the derivation cohort, 3441 (61.8%) were female, and the mean (SD) age was 52 (18.5) years. The 4PEPS comprises 13 clinical variables scored from -2 to 5. It results in the following strategy: (1) very low probability of PE if 4PEPS is less than 0: PE ruled out without testing; (2) low probability of PE if 4PEPS is 0 to 5: PE ruled out if D-dimer level is less than 1.0 μg/mL; (3) moderate probability of PE if 4PEPS is 6 to 12: PE ruled out if D-dimer level is less than the age-adjusted cutoff value; (4) high probability of PE if 4PEPS is greater than 12: PE ruled out by imaging without preceding D-dimer test. In the first and the second external validation cohorts, the area under the receiver operator characteristic curves were 0.79 (95% CI, 0.76 to 0.82) and 0.78 (95% CI, 0.74 to 0.81), respectively. The false-negative testing rates if the 4PEPS strategy had been applied were 0.71% (95% CI, 0.37 to 1.23) and 0.89% (95% CI, 0.53 to 1.49), respectively. The absolute reductions in imaging testing were -22% (95% CI, -26 to -19) and -19% (95% CI, -22 to -16) in the first and second external validation cohorts, respectively. The 4PEPS strategy compared favorably with all recent strategies in terms of imaging testing. Conclusions and relevance: The 4PEPS strategy may lead to a substantial and safe reduction in imaging testing for patients with suspected PE. It should now be tested in a formal outcome study.Item Derivation and validation of a multivariate model to predict mortality from pulmonary embolism with cancer: the POMPE-C tool(2012-05) Kline, Jeffrey A.; Roy, Pierre-Marie; Than, Martin P; Hernandez, Jackeline; Courtney, D Mark; Jones, Alan E; Penazola, Andrea; Pollack Jr, Charles VBackground Clinical guidelines recommend risk stratification of patients with acute pulmonary embolism (PE). Active cancer increases risk of PE and worsens prognosis, but also causes incidental PE that may be discovered during cancer staging. No quantitative decision instrument has been derived specifically for patients with active cancer and PE. Methods Classification and regression technique was used to reduce 25 variables prospectively collected from 408 patients with AC and PE. Selected variables were transformed into a logistic regression model, termed POMPE-C, and compared with the pulmonary embolism severity index (PESI) score to predict the outcome variable of death within 30 days. Validation was performed in an independent sample of 182 patients with active cancer and PE. Results POMPE-C included eight predictors: body mass, heart rate > 100, respiratory rate, SaO2%, respiratory distress, altered mental status, do not resuscitate status, and unilateral limb swelling. In the derivation set, the area under the ROC curve for POMPE-C was 0.84 (95% CI: 0.82-0.87), significantly greater than PESI (0.68, 0.60-0.76). In the validation sample, POMPE-C had an AUC of 0.86 (0.78-0.93). No patient with POMPE-C estimate ≤ 5% died within 30 days (0/50, 0-7%), whereas 10/13 (77%, 46-95%) with POMPE-C estimate > 50% died within 30 days. Conclusion In patients with active cancer and PE, POMPE-C demonstrated good prognostic accuracy for 30 day mortality and better performance than PESI. If validated in a large sample, POMPE-C may provide a quantitative basis to decide treatment options for PE discovered during cancer staging and with advanced cancer.