- Browse by Author
Browsing by Author "Roy, Bhaskar"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Biallelic CRELD1 variants cause a multisystem syndrome, including neurodevelopmental phenotypes, cardiac dysrhythmias, and frequent infections(Elsevier, 2024) Jeffries, Lauren; Mis, Emily K.; McWalter, Kirsty; Donkervoort, Sandra; Brodsky, Nina N.; Carpier, Jean-Marie; Ji, Weizhen; Ionita, Cristian; Roy, Bhaskar; Morrow, Jon S.; Darbinyan, Armine; Iyer, Krishna; Aul, Ritu B.; Banka, Siddharth; Chao, Katherine R.; Cobbold, Laura; Cohen, Stacey; Custodio, Helena M.; Drummond-Borg, Margaret; Elmslie, Frances; Finanger, Erika; Hainline, Bryan E.; Helbig, Ingo; Hewson, Stacy; Hu, Ying; Jackson, Adam; Josifova, Dragana; Konstantino, Monica; Leach, Meganne E.; Mak, Bryan; McCormick, David; McGee, Elisabeth; Nelson, Stanley; Nguyen, Joanne; Nugent, Kimberly; Ortega, Lucy; Goodkin, Howard P.; Roeder, Elizabeth; Roy, Sani; Sapp, Katie; Saade, Dimah; Sisodiya, Sanjay M.; Stals, Karen; Towner, Shelley; Wilson, William; Deciphering Developmental Disorders; Genomics England Research Consortium; Undiagnosed Disease Network; Khokha, Mustafa K.; Bönnemann, Carsten G.; Lucas, Carrie L.; Lakhani, Saquib A.; Medical and Molecular Genetics, School of MedicinePurpose: We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants. Methods: The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells. Results: Biallelic variants in CRELD1 were found in 18 participants from 14 families. Affected individuals displayed an array of phenotypes involving developmental delay, early-onset epilepsy, and hypotonia, with about half demonstrating cardiac arrhythmias and some experiencing recurrent infections. Most harbored a frameshift in trans with a missense allele, with 1 recurrent variant, p.(Cys192Tyr), identified in 10 families. X tropicalis tadpoles with creld1 knockdown displayed developmental defects along with increased susceptibility to induced seizures compared with controls. Additionally, human CRELD1 harboring missense variants from affected individuals had reduced protein function, indicated by a diminished ability to induce craniofacial defects when overexpressed in X tropicalis. Finally, baseline analyses of peripheral blood mononuclear cells showed similar proportions of immune cell subtypes in patients compared with healthy donors. Conclusion: This patient cohort, combined with experimental data, provide evidence of a multisystem clinical syndrome mediated by recessive variants in CRELD1.Item Targeting LRRC15 Inhibits Metastatic Dissemination of Ovarian Cancer(American Association for Cancer Research, 2022) Ray, Upasana; Jung, Deok-Beom; Jin, Ling; Xiao, Yinan; Dasari, Subramanyam; Bhattacharya, Sayantani Sarkar; Thirusangu, Prabhu; Staub, Julie K.; Roy, Debarshi; Roy, Bhaskar; Weroha, S. John; Hou, Xiaonan; Purcell, James W.; Bakkum-Gamez, Jamie N.; Kaufmann, Scott H.; Kannan, Nagarajan; Mitra, Anirban K.; Shridhar, Viji; Medical and Molecular Genetics, School of MedicineDissemination of ovarian cancer cells can lead to inoperable metastatic lesions in the bowel and omentum that cause patient death. Here we show that LRRC15, a type-I 15-leucine-rich repeat-containing membrane protein, highly overexpressed in ovarian cancer bowel metastases compared with matched primary tumors and acts as a potent promoter of omental metastasis. Complementary models of ovarian cancer demonstrated that LRRC15 expression leads to inhibition of anoikis-induced cell death and promotes adhesion and invasion through matrices that mimic omentum. Mechanistically, LRRC15 interacted with β1-integrin to stimulate activation of focal adhesion kinase (FAK) signaling. As a therapeutic proof of concept, targeting LRRC15 with the specific antibody-drug conjugate ABBV-085 in both early and late metastatic ovarian cancer cell line xenograft models prevented metastatic dissemination, and these results were corroborated in metastatic patient-derived ovarian cancer xenograft models. Furthermore, treatment of 3D-spheroid cultures of LRRC15-positive patient-derived ascites with ABBV-085 reduced cell viability. Overall, these data uncover a role for LRRC15 in promoting ovarian cancer metastasis and suggest a novel and promising therapy to target ovarian cancer metastases. Significance: This study identifies that LRRC15 activates β1-integrin/FAK signaling to promote ovarian cancer metastasis and shows that the LRRC15-targeted antibody-drug conjugate ABBV-085 suppresses ovarian cancer metastasis in preclinical models.