- Browse by Author
Browsing by Author "Rowe, James B."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Creating the Pick's disease International Consortium: Association study of MAPT H2 haplotype with risk of Pick's disease(medRxiv, 2023-04-24) Valentino, Rebecca R.; Scotton, William J.; Roemer, Shanu F.; Lashley, Tammaryn; Heckman, Michael G.; Shoai, Maryam; Martinez-Carrasco, Alejandro; Tamvaka, Nicole; Walton, Ronald L.; Baker, Matthew C.; Macpherson, Hannah L.; Real, Raquel; Soto-Beasley, Alexandra I.; Mok, Kin; Revesz, Tamas; Warner, Thomas T.; Jaunmuktane, Zane; Boeve, Bradley F.; Christopher, Elizabeth A.; DeTure, Michael; Duara, Ranjan; Graff-Radford, Neill R.; Josephs, Keith A.; Knopman, David S.; Koga, Shunsuke; Murray, Melissa E.; Lyons, Kelly E.; Pahwa, Rajesh; Parisi, Joseph E.; Petersen, Ronald C.; Whitwell, Jennifer; Grinberg, Lea T.; Miller, Bruce; Schlereth, Athena; Seeley, William W.; Spina, Salvatore; Grossman, Murray; Irwin, David J.; Lee, Edward B.; Suh, EunRan; Trojanowski, John Q.; Van Deerlin, Vivianna M.; Wolk, David A.; Connors, Theresa R.; Dooley, Patrick M.; Frosch, Matthew P.; Oakley, Derek H.; Aldecoa, Iban; Balasa, Mircea; Gelpi, Ellen; Borrego-Écija, Sergi; de Eugenio Huélamo, Rosa Maria; Gascon-Bayarri, Jordi; Sánchez-Valle, Raquel; Sanz-Cartagena, Pilar; Piñol-Ripoll, Gerard; Molina-Porcel, Laura; Bigio, Eileen H.; Flanagan, Margaret E.; Gefen, Tamar; Rogalski, Emily J.; Weintraub, Sandra; Redding-Ochoa, Javier; Chang, Koping; Troncoso, Juan C.; Prokop, Stefan; Newell, Kathy L.; Ghetti, Bernardino; Jones, Matthew; Richardson, Anna; Robinson, Andrew C.; Roncaroli, Federico; Snowden, Julie; Allinson, Kieren; Green, Oliver; Rowe, James B.; Singh, Poonam; Beach, Thomas G.; Serrano, Geidy E.; Flowers, Xena E.; Goldman, James E.; Heaps, Allison C.; Leskinen, Sandra P.; Teich, Andrew F.; Black, Sandra E.; Keith, Julia L.; Masellis, Mario; Bodi, Istvan; King, Andrew; Sarraj, Safa-Al; Troakes, Claire; Halliday, Glenda M.; Hodges, John R.; Kril, Jillian J.; Kwok, John B.; Piguet, Olivier; Gearing, Marla; Arzberger, Thomas; Roeber, Sigrun; Attems, Johannes; Morris, Christopher M.; Thomas, Alan J.; Evers, Bret M.; White, Charles L.; Mechawar, Naguib; Sieben, Anne A.; Cras, Patrick P.; De Vil, Bart B.; De Deyn, Peter Paul P. P.; Duyckaerts, Charles; Le Ber, Isabelle; Seihean, Danielle; Turbant-Leclere, Sabrina; MacKenzie, Ian R.; McLean, Catriona; Cykowski, Matthew D.; Ervin, John F.; Wang, Shih-Hsiu J.; Graff, Caroline; Nennesmo, Inger; Nagra, Rashed M.; Riehl, James; Kovacs, Gabor G.; Giaccone, Giorgio; Nacmias, Benedetta; Neumann, Manuela; Ang, Lee-Cyn; Finger, Elizabeth C.; Blauwendraat, Cornelis; Nalls, Mike A.; Singleton, Andrew B.; Vitale, Dan; Cunha, Cristina; Carvalho, Agostinho; Wszolek, Zbigniew K.; Morris, Huw R.; Rademakers, Rosa; Hardy, John A.; Dickson, Dennis W.; Rohrer, Jonathan D.; Ross, Owen A.; Pathology and Laboratory Medicine, School of MedicineBackground: Pick's disease (PiD) is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. PiD is pathologically defined by argyrophilic inclusion Pick bodies and ballooned neurons in the frontal and temporal brain lobes. PiD is characterised by the presence of Pick bodies which are formed from aggregated, hyperphosphorylated, 3-repeat tau proteins, encoded by the MAPT gene. The MAPT H2 haplotype has consistently been associated with a decreased disease risk of the 4-repeat tauopathies of progressive supranuclear palsy and corticobasal degeneration, however its role in susceptibility to PiD is unclear. The primary aim of this study was to evaluate the association between MAPT H2 and risk of PiD. Methods: We established the Pick's disease International Consortium (PIC) and collected 338 (60.7% male) pathologically confirmed PiD brains from 39 sites worldwide. 1,312 neurologically healthy clinical controls were recruited from Mayo Clinic Jacksonville, FL (N=881) or Rochester, MN (N=431). For the primary analysis, subjects were directly genotyped for MAPT H1-H2 haplotype-defining variant rs8070723. In secondary analysis, we genotyped and constructed the six-variant MAPT H1 subhaplotypes (rs1467967, rs242557, rs3785883, rs2471738, rs8070723, and rs7521). Findings: Our primary analysis found that the MAPT H2 haplotype was associated with increased risk of PiD (OR: 1.35, 95% CI: 1.12-1.64 P=0.002). In secondary analysis involving H1 subhaplotypes, a protective association with PiD was observed for the H1f haplotype (0.0% vs. 1.2%, P=0.049), with a similar trend noted for H1b (OR: 0.76, 95% CI: 0.58-1.00, P=0.051). The 4-repeat tauopathy risk haplotype MAPT H1c was not associated with PiD susceptibility (OR: 0.93, 95% CI: 0.70-1.25, P=0.65). Interpretation: The PIC represents the first opportunity to perform relatively large-scale studies to enhance our understanding of the pathobiology of PiD. This study demonstrates that in contrast to its protective role in 4R tauopathies, the MAPT H2 haplotype is associated with an increased risk of PiD. This finding is critical in directing isoform-related therapeutics for tauopathies.Item Plasma Neurofilament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration(American Academy of Neurology, 2021-05-04) Rojas, Julio C.; Wang, Ping; Staffaroni, Adam M.; Heller, Carolin; Cobigo, Yann; Wolf, Amy; Goh, Sheng-Yang M.; Ljubenkov, Peter A.; Heuer, Hilary W.; Fong, Jamie C.; Taylor, Joanne B.; Veras, Eliseo; Song, Linan; Jeromin, Andreas; Hanlon, David; Yu, Lili; Khinikar, Arvind; Sivasankaran, Rajeev; Kieloch, Agnieszka; Valentin, Marie-Anne; Karydas, Anna M.; Mitic, Laura L.; Pearlman, Rodney; Kornak, John; Kramer, Joel H.; Miller, Bruce L.; Kantarci, Kejal; Knopman, David S.; Graff-Radford, Neill; Petrucelli, Leonard; Rademakers, Rosa; Irwin, David J.; Grossman, Murray; Ramos, Eliana Marisa; Coppola, Giovanni; Mendez, Mario F.; Bordelon, Yvette; Dickerson, Bradford C.; Ghoshal, Nupur; Huey, Edward D.; Mackenzie, Ian R.; Appleby, Brian S.; Domoto-Reilly, Kimiko; Hsiung, Ging-Yuek R.; Toga, Arthur W.; Weintraub, Sandra; Kaufer, Daniel I.; Kerwin, Diana; Litvan, Irene; Onyike, Chiadikaobi U.; Pantelyat, Alexander; Roberson, Erik D.; Tartaglia, Maria C.; Foroud, Tatiana; Chen, Weiping; Czerkowicz, Julie; Graham, Danielle L.; van Swieten, John C.; Borroni, Barbara; Sanchez-Valle, Raquel; Moreno, Fermin; Laforce, Robert; Graff, Caroline; Synofzik, Matthis; Galimberti, Daniela; Rowe, James B.; James B., Mario; Finger, Elizabeth; Vandenberghe, Rik; de Mendonça, Alexandre; Tagliavini, Fabrizio; Santana, Isabel; Ducharme, Simon; Butler, Chris R.; Gerhard, Alexander; Levin, Johannes; Danek, Adrian; Otto, Markus; Sorbi, Sandro; Cash, David M.; Convery, Rhian S.; Bocchetta, Martina; Foiani, Martha; Greaves, Caroline V.; Peakman, Georgia; Russell, Lucy; Swift, Imogen; Todd, Emily; Rohrer, Jonathan D.; Boeve, Bradley F.; Rosen, Howard J.; Boxer, Adam L.; Neurology, School of MedicineObjective: We tested the hypothesis that plasma neurofilament light chain (NfL) identifies asymptomatic carriers of familial frontotemporal lobar degeneration (FTLD)-causing mutations at risk of disease progression. Methods: Baseline plasma NfL concentrations were measured with single-molecule array in original (n = 277) and validation (n = 297) cohorts. C9orf72, GRN, and MAPT mutation carriers and noncarriers from the same families were classified by disease severity (asymptomatic, prodromal, and full phenotype) using the CDR Dementia Staging Instrument plus behavior and language domains from the National Alzheimer's Disease Coordinating Center FTLD module (CDR+NACC-FTLD). Linear mixed-effect models related NfL to clinical variables. Results: In both cohorts, baseline NfL was higher in asymptomatic mutation carriers who showed phenoconversion or disease progression compared to nonprogressors (original: 11.4 ± 7 pg/mL vs 6.7 ± 5 pg/mL, p = 0.002; validation: 14.1 ± 12 pg/mL vs 8.7 ± 6 pg/mL, p = 0.035). Plasma NfL discriminated symptomatic from asymptomatic mutation carriers or those with prodromal disease (original cutoff: 13.6 pg/mL, 87.5% sensitivity, 82.7% specificity; validation cutoff: 19.8 pg/mL, 87.4% sensitivity, 84.3% specificity). Higher baseline NfL correlated with worse longitudinal CDR+NACC-FTLD sum of boxes scores, neuropsychological function, and atrophy, regardless of genotype or disease severity, including asymptomatic mutation carriers. Conclusions: Plasma NfL identifies asymptomatic carriers of FTLD-causing mutations at short-term risk of disease progression and is a potential tool to select participants for prevention clinical trials. Trial registration information: ClinicalTrials.gov Identifier: NCT02372773 and NCT02365922. Classification of evidence: This study provides Class I evidence that in carriers of FTLD-causing mutations, elevation of plasma NfL predicts short-term risk of clinical progression.Item Sex differences in clinical phenotypes of behavioral variant frontotemporal dementia(Wiley, 2025) Liu, Xulin; de Boer, Sterre C. M.; Cortez, Kasey; Poos, Jackie M.; Illán-Gala, Ignacio; Heuer, Hilary; Forsberg, Leah K.; Casaletto, Kaitlin; Memel, Molly; Appleby, Brian S.; Barmada, Sami; Bozoki, Andrea; Clark, David; Cobigo, Yann; Darby, Ryan; Dickerson, Bradford C.; Domoto-Reilly, Kimiko; Galasko, Douglas R.; Geschwind, Daniel H.; Ghoshal, Nupur; Graff-Radford, Neill R.; Grant, Ian M.; Hsiung, Ging-Yuek Robin; Honig, Lawrence S.; Huey, Edward D.; Irwin, David; Kantarci, Kejal; Léger, Gabriel C.; Litvan, Irene; Mackenzie, Ian R.; Masdeu, Joseph C.; Mendez, Mario F.; Onyike, Chiadi U.; Pascual, Belen; Pressman, Peter; Bayram, Ece; Ramos, Eliana Marisa; Roberson, Erik D.; Rogalski, Emily; Bouzigues, Arabella; Russell, Lucy L.; Foster, Phoebe H.; Ferry-Bolder, Eve; Masellis, Mario; van Swieten, John; Jiskoot, Lize; Seelaar, Harro; Sanchez-Valle, Raquel; Laforce, Robert; Graff, Caroline; Galimberti, Daniela; Vandenberghe, Rik; de Mendonça, Alexandre; Tiraboschi, Pietro; Santana, Isabel; Gerhard, Alexander; Levin, Johannes; Sorbi, Sandro; Otto, Markus; Pasquier, Florence; Ducharme, Simon; Butler, Chris R.; Le Ber, Isabelle; Finger, Elizabeth; Rowe, James B.; Synofzik, Matthis; Moreno, Fermin; Borroni, Barbara; Boeve, Brad F.; Boxer, Adam L.; Rosen, Howie J.; Pijnenburg, Yolande A. L.; Rohrer, Jonathan D.; Tartaglia, Maria Carmela; ALLFTD Consortium; GENFI Consortium; Medicine, School of MedicineIntroduction: Higher male prevalence in sporadic behavioral variant frontotemporal dementia (bvFTD) has been reported. We hypothesized differences in phenotypes between genetic and sporadic bvFTD females resulting in underdiagnosis of sporadic bvFTD females. Methods: We included genetic and sporadic bvFTD patients from two multicenter cohorts. We compared behavioral and cognitive symptoms, and gray matter volumes, between genetic and sporadic cases in each sex. Results: Females with sporadic bvFTD showed worse compulsive behavior (p = 0.026) and language impairments (p = 0.024) compared to females with genetic bvFTD (n = 152). Genetic bvFTD females had smaller gray matter volumes than sporadic bvFTD females, particularly in the parietal lobe. Discussion: Females with sporadic bvFTD exhibit a distinct clinical phenotype compared to females with genetic bvFTD. This difference may explain the discrepancy in prevalence between genetic and sporadic cases, as some females without genetic mutations may be misdiagnosed due to atypical bvFTD symptom presentation. Highlights: Sex ratio is equal in genetic behavioral variant of frontotemporal dementia (bvFTD), whereas more males are present in sporadic bvFTD. Distinct neuropsychiatric phenotypes exist between sporadic and genetic bvFTD in females. Phenotype might explain the sex ratio difference between sporadic and genetic cases.Item Temporal order of clinical and biomarker changes in familial frontotemporal dementia(Springer Nature, 2022) Staffaroni, Adam M.; Quintana, Melanie; Wendelberger, Barbara; Heuer, Hilary W.; Russell, Lucy L.; Cobigo, Yann; Wolf, Amy; Goh, Sheng-Yang Matt; Petrucelli, Leonard; Gendron, Tania F.; Heller, Carolin; Clark, Annie L.; Taylor, Jack Carson; Wise, Amy; Ong, Elise; Forsberg, Leah; Brushaber, Danielle; Rojas, Julio C.; VandeVrede, Lawren; Ljubenkov, Peter; Kramer, Joel; Casaletto, Kaitlin B.; Appleby, Brian; Bordelon, Yvette; Botha, Hugo; Dickerson, Bradford C.; Domoto-Reilly, Kimiko; Fields, Julie A.; Foroud, Tatiana; Gavrilova, Ralitza; Geschwind, Daniel; Ghoshal, Nupur; Goldman, Jill; Graff-Radford, Jonathon; Graff-Radford, Neill; Grossman, Murray; Hall, Matthew G. H.; Hsiung, Ging-Yuek; Huey, Edward D.; Irwin, David; Jones, David T.; Kantarci, Kejal; Kaufer, Daniel; Knopman, David; Kremers, Walter; Lago, Argentina Lario; Lapid, Maria I.; Litvan, Irene; Lucente, Diane; Mackenzie, Ian R.; Mendez, Mario F.; Mester, Carly; Miller, Bruce L.; Onyike, Chiadi U.; Rademakers, Rosa; Ramanan, Vijay K.; Ramos, Eliana Marisa; Rao, Meghana; Rascovsky, Katya; Rankin, Katherine P.; Roberson, Erik D.; Savica, Rodolfo; Tartaglia, M. Carmela; Weintraub, Sandra; Wong, Bonnie; Cash, David M.; Bouzigues, Arabella; Swift, Imogen J.; Peakman, Georgia; Bocchetta, Martina; Todd, Emily G.; Convery, Rhian S.; Rowe, James B.; Borroni, Barbara; Galimberti, Daniela; Tiraboschi, Pietro; Masellis, Mario; Finger, Elizabeth; van Swieten, John C.; Seelaar, Harro; Jiskoot, Lize C.; Sorbi, Sandro; Butler, Chris R.; Graff, Caroline; Gerhard, Alexander; Langheinrich, Tobias; Laforce, Robert; Sanchez-Valle, Raquel; de Mendonça, Alexandre; Moreno, Fermin; Synofzik, Matthis; Vandenberghe, Rik; Ducharme, Simon; Le Ber, Isabelle; Levin, Johannes; Danek, Adrian; Otto, Markus; Pasquier, Florence; Santana, Isabel; Kornak, John; Boeve, Bradley F.; Rosen, Howard J.; Rohrer, Jonathan D.; Boxer, Adam L.; Frontotemporal Dementia Prevention Initiative (FPI) Investigators; Medicine, School of MedicineUnlike familial Alzheimer’s disease, we have been unable to accurately predict symptom onset in presymptomatic familial frontotemporal dementia (f-FTD) mutation carriers, which is a major hurdle to designing disease prevention trials. We developed multimodal models for f-FTD disease progression and estimated clinical trial sample sizes in C9orf72, GRN, and MAPT mutation carriers. Models included longitudinal clinical and neuropsychological scores, regional brain volumes, and plasma neurofilament light chain (NfL) in 796 carriers and 412 non-carrier controls. We found that the temporal ordering of clinical and biomarker progression differed by genotype. In prevention-trial simulations employing model-based patient selection, atrophy and NfL were the best endpoints, whereas clinical measures were potential endpoints in early symptomatic trials. F-FTD prevention trials are feasible but will likely require global recruitment efforts. These disease progression models will facilitate the planning of f-FTD clinical trials, including the selection of optimal endpoints and enrollment criteria to maximize power to detect treatment effects.Item The prevalence of tau‐PET positivity in aging and dementia(Wiley, 2025-01-09) Coomans, Emma M.; Groot, Colin; Rowe, Christopher C.; Dore, Vincent; Villemagne, Victor L.; van de Giessen, Elsmarieke; van der Flier, Wiesje M.; Pijnenburg, Yolande A. L.; Visser, Pieter Jelle; den Braber, Anouk; Pontecorvo, Michael; Shcherbinin, Sergey; Kennedy, Ian A.; Jagust, William J.; Baker, Suzanne L.; Harrison, Theresa M.; Gispert, Juan Domingo; Shekari, Mahnaz; Minguillon, Carolina; Smith, Ruben; Mattsson-Carlgren, Niklas; Palmqvist, Sebastian; Strandberg, Olof; Stomrud, Erik; Malpetti, Maura; O'Brien, John T.; Rowe, James B.; Jäger, Elena; Bischof, Gérard N.; Drzezga, Alexander; Garibotto, Valentina; Frisoni, Giovanni; Peretti, Débora Elisa; Schöll, Michael; Skoog, Ingmar; Kern, Silke; Sperling, Reisa A.; Johnson, Keith A.; Risacher, Shannon L.; Saykin, Andrew J.; Carrillo, Maria C.; Dickerson, Brad C.; Apostolova, Liana G.; Barthel, Henryk; Rullmann, Michael; Messerschmidt, Konstantin; Vandenberghe, Rik; Van Laere, Koen; Spruyt, Laure; Franzmeier, Nicolai; Brendel, Matthias; Gnörich, Johannes; Benzinger, Tammie L. S.; Lagarde, Julien; Sarazin, Marie; Bottlaender, Michel; Villeneuve, Sylvia; Poirier, Judes; Seo, Sang Won; Gu, Yuna; Kim, Jun Pyo; Mormino, Elizabeth; Young, Christina B.; Vossler, Hillary; Rosa-Neto, Pedro; Therriault, Joseph; Rahmouni, Nesrine; Coath, William; Cash, David M.; Schott, Jonathan M.; Rabinovici, Gil D.; La Joie, Renaud; Rosen, Howard J.; Johnson, Sterling C.; Christian, Bradley T.; Betthauser, Tobey J.; Hansson, Oskar; Ossenkoppele, Rik; Radiology and Imaging Sciences, School of MedicineBackground Tau‐PET imaging allows in‐vivo detection of neurofibrillary tangles. One tau‐PET tracer (i.e., [18F]flortaucipir) has received FDA‐approval for clinical use, and multiple other tau‐PET tracers have been implemented into clinical trials for participant selection and/or as a primary or secondary outcome measure. To optimize future use of tau‐PET, it is essential to understand how demographic, clinical and genetic factors affect tau‐PET‐positivity rates. Method This large‐scale multi‐center study includes 9713 participants from 35 cohorts worldwide who underwent tau‐PET with [18F]flortaucipir (n = 6420), [18F]RO948 (n = 1999), [18F]MK6240 (n = 878) or [18F]PI2620 (n = 416) (Table‐1). We analyzed individual‐level tau‐PET SUVR data using a cerebellar reference region that were processed either centrally (n = 3855) or by each cohort (n = 5858). We computed cohort‐specific SUVR thresholds based on the mean + 2 standard deviations in a temporal meta‐region of amyloid‐negative cognitively normal (CN) individuals aged >50. Logistic generalized estimating equations were used to estimate tau‐PET‐positivity probabilities, using an exchangeable correlation structure to account for within‐cohort correlations. Analyses were performed with (interactions between) age, amyloid‐status, and APOE‐e4 carriership as independent variables, stratified for syndrome diagnosis. Result The study included 5962 CN participants (7.5% tau‐PET‐positive), 1683 participants with mild cognitive impairment (MCI, 33.8% tau‐PET‐positive) and 2068 participants with a clinical diagnosis of dementia (62.1% tau‐PET‐positive) (Figure‐1). From age 60 to 80 years, the estimated prevalence of tau‐PET‐positivity increased from 1.2% [95% CI: 0.9%‐1.5%] to 3.7% [2.3%‐5.1%] among CN amyloid‐negative participants; and from 16.4% [10.8%‐22.1%] to 20.5% [18.8%‐22.2%] among CN amyloid‐positive participants. Among amyloid‐negative participants with MCI and dementia, from age 60 to 80 years, the estimated prevalence of tau‐PET‐positivity increased from 3.5% [1.6%‐5.3%] to 11.8% [7.1%‐16.5%] and from 12.6% [4.5%‐20.7%] to 15.9% [6.7%‐25.1%] respectively. In contrast, among amyloid‐positive participants with MCI and dementia, from age 60 to 80 years, the estimated prevalence of tau‐PET‐positivity decreased from 66.5% [57.0%‐76.0%] to 48.3% [42.9%‐53.8%] and from 92.3% [88.7%‐95.9%] to 73.4% [67.5%‐79.3%] respectively. APOE‐e4 status primarily modulated the association of age with tau‐PET‐positivity estimates among CN and MCI amyloid‐positive participants (Figure‐2). Conclusion This large‐scale multi‐cohort study provides robust prevalence estimates of tau‐PET‐positivity, which can aid the interpretation of tau‐PET in the clinic and inform clinical trial designs.