- Browse by Author
Browsing by Author "Rovnyak, Steven"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Airgap-less Electric Motor(2021-08) Alibeik, Maryam; dos Santos, Euzeli; King, Brian; Li, Lingxi; Rovnyak, StevenThis dissertation focuses mainly on the airgap-less electric machine. An extensive literature review has been presented along with a systematic study that included analytical modeling, simulation with both steady-state and transient analysis, prototype building, and experimental validation. In this type of device, the rotor is allowed to touch the stator at a contact point, which maximizes the internal flux and therefore the electromagnetic torque. A higher torque density motor is proposed in this dissertation due to a reduced reluctance caused by zero airgap situation. A comparison with other high torque density electric machines demonstrates the advantages of the proposed machine. Switched reluctance motor for hybrid vehicle, integrated magnetic gear, induction machines, are some examples of the machines with lower torque density than the airgap-less electric machine. This machine will maximize the generated torque allowing these type of machines to be competitive in applications where hydraulic motors are prevalent, i.e., low-speed and high-torque requirements. Hydraulic motor systems face two major problems with their braking system and with low efficiency due to a large number of energy conversion stages (i.e., motor-pump, hydraulic connections and the hydraulic motor itself). The proposed electric motor, unlike hydraulic motors, converts electrical energy directly to mechanical energy with no extra braking system necessary and with higher efficiency. The evolution of the airgap-less electric machine from three poles to 9 bi-poles is discussed in this dissertation. The modeling of this machine with a minimum number of poles is discussed before a generalization is presented. The simulation and analysis of the airgap-less electric motor has been done using Euler integration method as well as Runge Kutta 4th order integration method due to its higher precision. A proof-of-concept electric machine with nine magnetic bipoles is built to validate the theoretical assumptions.Item Autonomous Detection of Nearby Loss of Generation Events for Decentralized Controls(2024-05) Dahal, Niraj; Rovnyak, Steven; Li, Lingxi; Dos Santos, Euzeli; Lee, JohnA broad scope of this dissertation is to verify that a nearby loss of generation event in power system can be distinguished from similar remote disturbances by analyzing the resulting local modes of oscillation. An oscillation-based index derived from methods like Fourier transform, sinc filters and resonant filters is devised and experimented in combination with a variant of df/dt index to jointly classify if a loss of generation event is nearby or remote. A phenomenon widely observed during a loss of generation event is the average decrease in the system’s frequency, typically monitored using the df/dt index. Under-frequency load-shedding (UFLS) relays that are based on df/dt are highly likely to trip for nearby frequency events when combined with the oscillation-based index we propose. Nearby in our context refers to geographical distance, which is correlated with electrical distance, and includes buses within about 50-100 miles of the event location.Item Determining One-Shot Control Criteria in Western North American Power Grid with Swarm Optimization(2019-05) Vaughan, Gregory AE; Rovnyak, Steven; King, Brian; Dos Santos, EuzeliThe power transmission network is stretched thin in Western North America. When generators or substations fault, the resultant cascading failures can diminish transmission capabilities across wide regions of the continent. This thesis examined several methods of determining one-shot controls based on frequency decline in electrical generators to reduce the effect of one or more phase faults and tripped generators. These methods included criteria based on indices calculated from frequency measured at the controller location. These indices included criteria based on local modes and the rate of change of frequency. This thesis primarily used particle swarm optimization (PSO) with inertia to determine a well-adapted set of parameters. The parameters included up to three thresholds for indices calculated from frequency. The researchers found that the best method for distinguishing between one or more phase faults used thresholds on two Fourier indices. Future lines of research regarding one-shot controls were considered. A method that distinguished nearby tripped generators from one or more phase faults and load change events was proposed. This method used a moving average, a negative threshold for control, and a positive threshold to reject control. The negative threshold for the moving average is met frequently during any large transient event. An additional index must be used to distinguish loss of generation events. This index is the maximum value of the moving average up to the present time and it is good for distinguishing loss of generation events from transient swings caused by other events. This thesis further demonstrated how well a combination of controls based on both rate of change of frequency and local modes reduces instability of the network as determined by both a reduction in RMSGA and control efficiency at any time after the events. This thesis found that using local modes is generally useful to diagnose and apply one-shot controls when instability is caused by one or more phase faults, while when disconnected generators or reduced loads cause instability in the system, the local modes did not distinguish between loss of generation capacity events and reduced load events. Instead, differentiating based on the rate of change of frequency and an initial upward deflection of frequency or an initial downward deflection of frequency did distinguish between these types of events.Item Electric utility planning methods for the design of one shot stability controls(2012-12) Naghsh Nilchi, Maryam; Rovnyak, Steven; Chen, Yaobin; Du, Yingzi, 1975-Reliability of the wide-area power system is becoming a greater concern as the power grid is growing. Delivering electric power from the most economical source through fewest and shortest transmission lines to customers frequently increases the stress on the system and prevents it from maintaining its stability. Events like loss of transmission equipment and phase to ground faults can force the system to cross its stability limits by causing the generators to lose their synchronism. Therefore, a helpful solution is detection of these dynamic events and prediction of instability. Decision Trees (DTs) were used as a pattern recognition tool in this thesis. Based on training data, DT generated rules for detecting event, predicting loss of synchronism, and selecting stabilizing control. To evaluate the accuracy of these rules, they were applied to testing data sets. To train DTs of this thesis, direct system measurements like generator rotor angles and bus voltage angles as well as calculated indices such as the rate of change of bus angles, the Integral Square Bus Angle (ISBA) and the gradient of ISBA were used. The initial method of this thesis included a response based DT only for instability prediction. In this method, time and location of the events were unknown and the one shot control was applied when the instability was predicted. The control applied was in the form of fast power changes on four different buses. Further, an event detection DT was combined with the instability prediction such that the data samples of each case was checked with event detection DT rules. In cases that an event was detected, control was applied upon prediction of instability. Later in the research, it was investigated that different control cases could behave differently in terms of the number of cases they stabilize. Therefore, a third DT was trained to select between two different control cases to improve the effectiveness of the methodology. It was learned through internship at Midwest Independent Transmission Operators (MISO) that post-event steady-state analysis is necessary for better understanding the effect of the faults on the power system. Hence, this study was included in this research.Item Energy conversion unit with optimized waveform generation(2014) Sajadian, Sally; Santos Jr., Euzeli C. dos; Rizkalla, Maher E.; Rovnyak, Steven; King, BrianThe substantial increase demand for electrical energy requires high efficient apparatus dealing with energy conversion. Several technologies have been suggested to implement power supplies with higher efficiency, such as multilevel and interleaved converters. This thesis proposes an energy conversion unit with an optimized number of output voltage levels per number of switches nL=nS. The proposed five-level four-switch per phase converter has nL=nS=5/4 which is by far the best relationship among the converters presented in technical literature. A comprehensive literature review on existing five-level converter topologies is done to compare the proposed topology with conventional multilevel converters. The most important characteristics of the proposed configuration are: (i) reduced number of semiconductor devices, while keeping a high number of levels at the output converter side, (ii) only one DC source without any need to balance capacitor voltages, (iii) high efficiency, (iv) there is no dead-time requirement for the converters operation, (v) leg isolation procedure with lower stress for the DC-link capacitor. Single-phase and three-phase version of the proposed converter is presented in this thesis. Details regarding the operation of the configuration and modulation strategy are presented, as well as the comparison between the proposed converter and the conventional ones. Simulated results are presented to validate the theoretical expectations. In addition a fault tolerant converter based on proposed topology for micro-grid systems is presented. A hybrid pulse-width-modulation for the pre-fault operation and transition from the pre-fault to post-fault operation will be discussed. Selected steady-state and transient results are demonstrated to validate the theoretical modeling.Item EXPANSION OF DYNAMIC SIMULATION MODEL FOR A DISTRIBUTED GENERATOR UNINTENTIONAL ISLANDING DETECTION SCHEME(2010) Vasquez, Diana C.; Rovnyak, Steven; Rizkalla, Maher; Chen, YaobinThe interconnection of distributed resources requires specific voltage regulation, monitoring, protective relaying, power quality, and islanding detection. For this reason IEEE established standard IEEE 1547 that ensures the compliance with such requirements and it will help formulate technical specifications for grid interconnection with Distributed Generator (DG) resources. In search of meeting the IEEE 1547 standard requirement of detecting unintentional islanded operation, there has been ongoing research to develop anti-islanding methods that can detect the different changes that can occur when the grid is disconnected. A team of Electrical Engineering faculty at Indiana University Purdue University Indianapolis has worked previously on testing a DG unintentional Islanding Detection Scheme. This scheme uses an active anti-islanding method in which a small 1 Hz perturbation signal is added into the DG system and it helps detect when the grid is disconnected. The scheme uses the premise that a frequency deviation caused by perturbation to the system is smaller when the grid is connected than when it is in an island. In an initial dynamic simulation model for the islanding detection scheme, a two-machine microgrid system is used to explore frequency and voltage responses when the grid is disconnected. In this thesis, the two-machine microgrid is expanded to a ten-machine system so it can be shown that the frequency deviation caused by a perturbation signal is much smaller when the grid is connected even for a larger DG network. The 1 Hz component of the DG electrical frequency in a multiple machine microgrid system is also calculated in this thesis. This project was conducted in different stages. First, it was necessary to calculate the steady state power flow and electric power of a three-machine system and update the two-machine MATLAB program with the necessary changes. After making the changes, it was necessary to simulate the system and adjust the inertia of the machine that represents the grid to ensure that the simulation output was close in magnitude to previous testing results. When the three-machine system was successfully generated, a brand new program was created so a multiple machine system could be simulated. Then the multiple machine program was used to simulate and experiment with up to a ten-machine system. Finally a program to calculate the 1 Hz component of the DG electrical frequency was generated and used to show that the magnitude squared of the 1 Hz component is inversely proportional to the number of machines connected to the system. These last findings will later help set the threshold for islanding detection appropriately for different numbers of DG.Item Fuzzy-Rule-Based Failure Detection and Early Warning System for Lithium-ion Battery(2013-09-05) Wu, Meng; Chen, Yaobin; Li, Lingxi; Rovnyak, Steven; King, BrianLithium-ion battery is one kind of rechargeable battery, and also renewable, sustainable and portable. With the merits of high density, slow loss of charge when spare and no memory effect, lithium-ion battery is widely used in portable electronics and hybrid vehicles. Apart from its advantages, safety is a major concern for Lithium-ion batteries due to devastating incidents with laptop and cell phone batteries. Overcharge and over-discharge are two of the most common electrical abuses a lithium-ion battery suffers. In this thesis, a fuzzy-rule-based system is proposed to detect the over-charge and over-discharge failure in early time. The preliminary results for the failure signatures of overcharged and over-discharged lithium-ion are listed based on the experimental results under both room temperature and high temperature. A fuzzy-rule-based model utilizing these failure signatures is developed and validated. For over-charge case, the abnormal increase of the surface temperature and decrease of the voltage are captured. While for over discharge case, unusual temperature increase during overcharge phases and abnormal current decrease during overcharge phases are obtained. The inference engine for fuzzy-rule-based system is designed based on these failure signatures. An early warning signal will be given by this algorithm before the failure occurs. This failure detection and early warning system is verified to be effective through experimental validation. In the validation test, the proposed methods are successfully implemented in a real-time system for failure detection and early warning. The result of validation is compatible with the design expectation. Finally an accurate failure detection and early warning system is built and tested successfully.Item Mechanical and geometric considerations for the airgapless motor(2018-08) Wheeler, Nathan W.; Rovnyak, StevenThe purpose of this thesis is to perform modeling from different perspectives for an airgapless motor. The airgapless motor is a proposed type of electric machine whose purpose is to replace hydraulic machines in low speed high torque applications. Because of the nature of the movement for this device, modeling of this device is atypical to the modeling done with other electric machines. This thesis will present the operating principle of the airgapless motor and take an analytical approach to modeling the torque and total energy in the device. In addition, this thesis will present the power electronics necessary to drive this device and offer recommendations to maximize the torque and minimize the torque ripple. MATLAB simulations are used to verify that the conclusion of this thesis are consistent with observations made by previous publications and prototypes.Item Methods of Handling Missing Data in One Shot Response Based Power System Control(2019-08) Dahal, Niraj; Rovnyak, Steven; Li, Lingxi; Santos, Euzeli DosThe thesis extends the work done in [1] [2] by Rovnyak, et al. where the authors have described about transient event prediction and response based one shot control using decision trees trained and tested in a 176 bus model of WECC power system network. This thesis contains results from rigorous simulations performed to measure robustness of the existing one shot control subjected to missing PMU's data ranging from 0-10%. We can divide the thesis into two parts in which the first part includes understanding of the work done in [2] using another set of one-shot control combinations labelled as CC2 and the second part includes measuring their robustness while assuming missing PMU's data. Previous work from [2] involves use of decision trees for event detection based on different indices to classify a contingency as a 'Fault' or 'No fault' and another set of decision trees that decides either to actuate 'Control' or 'No control'. The actuation of control here means application of one-shot control combination to possibly bring the system to a new equilibrium point which would otherwise attain loss of synchronism. The work done in [2] also includes assessing performance of the one shot control without event detection. The thesis is organized as follows- Chapter 1 of the thesis highlights the effect of missing PMUs' data in a power system network and the need to address them appropriately. It also provides a general idea of transient stability and response of a transient fault in a power system. Chapter 2 forms the foundation of the thesis as it describes the work done in [1] [2] in detail. It describes the power system model used, contingencies set, and different indices used for decision trees. It also describes about the one shot control combination (CC1) deduced by Rovnyak, et.al. of which performance is later tested in this thesis assuming different missing data scenarios. In addition to CC1, the chapter also describes another set of control combination (CC2) whose performance is also tested assuming the same missing data scenarios. This chapter also explains about the control methodology used in [2]. Finally the performance metrics of the DTs are explained at the end of the chapter. These are the same performance metrics used in [2] to measure the robustness of the one shot control. Chapter 2 is thus more a literature review of previous work plus inclusion of few simulation results obtained from CC2 using exactly the same model and same control methodology. Chapter 3 describes different techniques of handling missing data from PMUs most of which have been used in and referred from different previous papers. Finally Chapter 4 presents the results and analysis of the simulation. The thesis is wrapped up explaining future enhancements and room for improvements.Item Optimal Power Control of a Wind Turbine Power Generation System(2012-09-27) Xue, Jie; Chen, Yaobin; Li, Lingxi; Rovnyak, StevenThis thesis focuses on optimization of wind power tracking control systems in order to capture maximum wind power for the generation system. In this work, a mathematical simulation model is developed for a variable speed wind turbine power generation system. The system consists a wind turbine with necessary transmission system, and a permanent magnet synchronous generator and its vector control system. A new fuzzy based hill climbing method for power tracking control is proposed and implemented to optimize the wind power for the system under various conditions. Two existing power tracking control methods, the tip speed ratio (TSR) control method and the speed sensorless control method are also implemented with the wind power system. The computer simulations with a 5 KW wind power generation system are performed. The results from the proposed control method are compared with those obtained using the two existing methods. It is illustrated that the proposed method generally outperforms the two existing methods, especially when the operating point is far away from the maximum point. The proposed control method also has similar stable characteristic when the operating point is close to the peak point in comparison with the existing methods. The proposed fuzzy control method is computationally efficient and can be easily implemented in real-time.