- Browse by Author
Browsing by Author "Rossor, Martin N."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item BDNF Val66Met moderates memory impairment, hippocampal function and tau in preclinical autosomal dominant Alzheimer’s disease(Oxford, 2016-10) Lim, Yen Ying; Hassenstab, Jason; Cruchaga, Carlos; Goate, Alison; Fagan, Anne M.; Benzinger, Tammie L. S.; Maruff, Paul; Snyder, Peter J.; Masters, Colin L.; Allegri, Ricardo; Chhatwal, Jasmeer; Farlow, Martin R.; Graff-Radford, Neill R.; Laske, Christoph; Levin, Johannes; McDade, Eric; Ringman, John M.; Rossor, Martin N.; Salloway, Stephen; Schofield, Peter R.; Holtzman, David M.; Morris, John C.; Bateman, Randall J.; Department of Neurology, IU School of MedicineThe brain-derived neurotrophic factor ( BDNF ) Val66Met polymorphism is implicated in synaptic excitation and neuronal integrity, and has previously been shown to moderate amyloid-β-related memory decline and hippocampal atrophy in preclinical sporadic Alzheimer’s disease. However, the effect of BDNF in autosomal dominant Alzheimer’s disease is unknown. We aimed to determine the effect of BDNF Val66Met on cognitive function, hippocampal function, tau and amyloid-β in preclinical autosomal dominant Alzheimer’s disease. We explored effects of apolipoprotein E ( APOE ) ε4 on these relationships. The Dominantly Inherited Alzheimer Network conducted clinical, neuropsychological, genetic, biomarker and neuroimaging measures at baseline in 131 mutation non-carriers and 143 preclinical autosomal dominant Alzheimer’s disease mutation carriers on average 12 years before clinical symptom onset. BDNF genotype data were obtained for mutation carriers (95 Val 66 homozygotes, 48 Met 66 carriers). Among preclinical mutation carriers, Met 66 carriers had worse memory performance, lower hippocampal glucose metabolism and increased levels of cerebrospinal fluid tau and phosphorylated tau (p-tau) than Val 66 homozygotes. Cortical amyloid-β and cerebrospinal fluid amyloid-β 42 levels were significantly different from non-carriers but did not differ between preclinical mutation carrier Val 66 homozygotes and Met 66 carriers. There was an effect of APOE on amyloid-β levels, but not cognitive function, glucose metabolism or tau. As in sporadic Alzheimer’s disease, the deleterious effects of amyloid-β on memory, hippocampal function, and tau in preclinical autosomal dominant Alzheimer’s disease mutation carriers are greater in Met 66 carriers. To date, this is the only genetic factor found to moderate downstream effects of amyloid-β in autosomal dominant Alzheimer’s disease.Item Early behavioural changes in familial Alzheimer's disease in the Dominantly Inherited Alzheimer Network(Oxford University Press, 2015-04) Ringman, John M.; Liang, Li-Jung; Zhou, Yan; Vangala, Sitaram; Teng, Edmond; Kremen, Sarah; Wharton, David; Goate, Alison; Marcus, Daniel S.; Farlow, Martin R.; Ghetti, Bernardino; McDade, Eric; Masters, Colin L.; Mayeux, Richard P.; Rossor, Martin N.; Salloway, Stephen; Schofield, Peter R.; Cummings, Jeffrey L.; Buckles, Virginia; Bateman, Randall J.; Morris, John C.; Dominantly Inherited Alzheimer Network; Department of Neurology, IU School of MedicinePrior studies indicate psychiatric symptoms such as depression, apathy and anxiety are risk factors for or prodromal symptoms of incipient Alzheimer's disease. The study of persons at 50% risk for inheriting autosomal dominant Alzheimer's disease mutations allows characterization of these symptoms before progressive decline in a population destined to develop illness. We sought to characterize early behavioural features in carriers of autosomal dominant Alzheimer's disease mutations. Two hundred and sixty-one persons unaware of their mutation status enrolled in the Dominantly Inherited Alzheimer Network, a study of persons with or at-risk for autosomal dominant Alzheimer's disease, were evaluated with the Neuropsychiatric Inventory-Questionnaire, the 15-item Geriatric Depression Scale and the Clinical Dementia Rating Scale (CDR). Ninety-seven asymptomatic (CDR = 0), 25 mildly symptomatic (CDR = 0.5), and 33 overtly affected (CDR > 0.5) autosomal dominant Alzheimer's disease mutation carriers were compared to 106 non-carriers with regard to frequency of behavioural symptoms on the Neuropsychiatric Inventory-Questionnaire and severity of depressive symptoms on the Geriatric Depression Scale using generalized linear regression models with appropriate distributions and link functions. Results from the adjusted analyses indicated that depressive symptoms on the Neuropsychiatric Inventory-Questionnaire were less common in cognitively asymptomatic mutation carriers than in non-carriers (5% versus 17%, P = 0.014) and the odds of experiencing at least one behavioural sign in cognitively asymptomatic mutation carriers was lower than in non-carriers (odds ratio = 0.50, 95% confidence interval: 0.26-0.98, P = 0.042). Depression (56% versus 17%, P = 0.0003), apathy (40% versus 4%, P < 0.0001), disinhibition (16% versus 2%, P = 0.009), irritability (48% versus 9%, P = 0.0001), sleep changes (28% versus 7%, P = 0.003), and agitation (24% versus 6%, P = 0.008) were more common and the degree of self-rated depression more severe (mean Geriatric Depression Scale score of 2.8 versus 1.4, P = 0.006) in mildly symptomatic mutation carriers relative to non-carriers. Anxiety, appetite changes, delusions, and repetitive motor activity were additionally more common in overtly impaired mutation carriers. Similar to studies of late-onset Alzheimer's disease, we demonstrated increased rates of depression, apathy, and other behavioural symptoms in the mildly symptomatic, prodromal phase of autosomal dominant Alzheimer's disease that increased with disease severity. We did not identify any increased psychopathology in mutation carriers over non-carriers during the presymptomatic stage, suggesting these symptoms result when a threshold of neurodegeneration is reached rather than as life-long qualities. Unexpectedly, we found lower rates of depressive symptoms in cognitively asymptomatic mutation carriers.Item Herpes simplex virus and rates of cognitive decline or whole brain atrophy in the Dominantly Inherited Alzheimer Network(Wiley, 2022) Warren-Gash, Charlotte; Cadogan, Sharon L.; Nicholas, Jennifer M.; Breuer, Judith M.; Shah, Divya; Pearce, Neil; Shiekh, Suhail; Smeeth, Liam; Farlow, Martin R.; Mori, Hiroshi; Gordon, Brian A.; Nuebling, Georg; McDade, Eric; Bateman, Randall J.; Schofield, Peter R.; Lee, Jae-Hong; Morris, John C.; Cash, David M.; Fox, Nick C.; Ridha, Basil H.; Rossor, Martin N.; Dominantly Inherited Alzheimer Network; Neurology, School of MedicineObjective: To investigate whether herpes simplex virus type 1 (HSV-1) infection was associated with rates of cognitive decline or whole brain atrophy among individuals from the Dominantly Inherited Alzheimer Network (DIAN). Methods: Among two subsets of the DIAN cohort (age range 19.6-66.6 years; median follow-up 3.0 years) we examined (i) rate of cognitive decline (N = 164) using change in mini-mental state examination (MMSE) score, (ii) rate of whole brain atrophy (N = 149), derived from serial MR imaging, calculated using the boundary shift integral (BSI) method. HSV-1 antibodies were assayed in baseline sera collected from 2009-2015. Linear mixed-effects models were used to compare outcomes by HSV-1 seropositivity and high HSV-1 IgG titres/IgM status. Results: There was no association between baseline HSV-1 seropositivity and rates of cognitive decline or whole brain atrophy. Having high HSV-1 IgG titres/IgM was associated with a slightly greater decline in MMSE points per year (difference in slope - 0.365, 95% CI: -0.958 to -0.072), but not with rate of whole brain atrophy. Symptomatic mutation carriers declined fastest on both MMSE and BSI measures, however, this was not influenced by HSV-1. Among asymptomatic mutation carriers, rates of decline on MMSE and BSI were slightly greater among those who were HSV-1 seronegative. Among mutation-negative individuals, no differences were seen by HSV-1. Stratifying by APOE4 status yielded inconsistent results. Interpretation: We found no evidence for a major role of HSV-1, measured by serum antibodies, in cognitive decline or whole brain atrophy among individuals at high risk of early-onset AD.Item Presymptomatic atrophy in autosomal dominant Alzheimer's disease: A serial magnetic resonance imaging study(Elsevier, 2018-01) Kinnunen, Kirsi M.; Cash, David M.; Poole, Teresa; Frost, Chris; Benzinger, Tammie L. S.; Ahsan, R. Laila; Leung, Kelvin K.; Cardoso, M. Jorge; Modat, Marc; Malone, Ian B.; Morris, John C.; Bateman, Randall J.; Marcus, Daniel S.; Goate, Alison; Salloway, Stephen P.; Correia, Stephen; Sperling, Reisa A.; Chhatwal, Jasmeer P.; Mayeux, Richard P.; Brickman, Adam M.; Martins, Ralph N.; Farlow, Martin R.; Ghetti, Bernardino; Saykin, Andrew J.; Jack, Clifford R.; Schofield, Peter R.; McDade, Eric; Weiner, Michael W.; Ringman, John M.; Thompson, Paul M.; Masters, Colin L.; Rowe, Christopher C.; Rossor, Martin N.; Ourselin, Sebastien; Fox, Nick C.; Neurology, School of MedicineINTRODUCTION: Identifying at what point atrophy rates first change in Alzheimer's disease is important for informing design of presymptomatic trials. METHODS: Serial T1-weighted magnetic resonance imaging scans of 94 participants (28 noncarriers, 66 carriers) from the Dominantly Inherited Alzheimer Network were used to measure brain, ventricular, and hippocampal atrophy rates. For each structure, nonlinear mixed-effects models estimated the change-points when atrophy rates deviate from normal and the rates of change before and after this point. RESULTS: Atrophy increased after the change-point, which occurred 1-1.5 years (assuming a single step change in atrophy rate) or 3-8 years (assuming gradual acceleration of atrophy) before expected symptom onset. At expected symptom onset, estimated atrophy rates were at least 3.6 times than those before the change-point. DISCUSSION: Atrophy rates are pathologically increased up to seven years before "expected onset". During this period, atrophy rates may be useful for inclusion and tracking of disease progression.Item Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease(Nature Research, 2019-02) Preische, Oliver; Schultz, Stephanie A.; Apel, Anja; Kuhle, Jens; Kaeser, Stephan A.; Barro, Christian; Gräber, Susanne; Kuder-Buletta, Elke; LaFougere, Christian; Laske, Christoph; Vöglein, Jonathan; Levin, Johannes; Masters, Colin L.; Martins, Ralph; Schofield, Peter R.; Rossor, Martin N.; Graff-Radford, Neill R.; Salloway, Stephen; Ghetti, Bernardino; Ringman, John M.; Noble, James M.; Chhatwal, Jasmeer; Goate, Alison M.; Benzinger, Tammie L. S.; Morris, John C.; Bateman, Randall J.; Wang, Guoqiao; Fagan, Anne M.; McDade, Eric M.; Gordon, Brian A.; Jucker, Mathias; Alzheimer Network; Allegri, Ricardo; Amtashar, Fatima; Bateman, Randall; Benzinger, Tammie; Berman, Sarah; Bodge, Courtney; Brandon, Susan; Brooks, William; Buck, Jill; Buckles, Virginia; Chea, Sochenda; Chhatwal, Jasmeer; Chrem, Patricio; Chui, Helena; Cinco, Jake; Clifford, Jack; Cruchaga, Carlos; D’Mello, Mirelle; Donahue, Tamara; Douglas, Jane; Edigo, Noelia; Erekin-Taner, Nilufer; Fagan, Anne; Farlow, Marty; Farrar, Angela; Feldman, Howard; Flynn, Gigi; Fox, Nick; Franklin, Erin; Fujii, Hisako; Gant, Cortaiga; Gardener, Samantha; Ghetti, Bernardino; Goate, Alison; Goldman, Jill; Gordon, Brian; Graff-Radford, Neill; Gray, Julia; Gurney, Jenny; Hassenstab, Jason; Hirohara, Mie; Holtzman, David; Hornbeck, Russ; DiBari, Siri Houeland; Ikeuchi, Takeshi; Ikonomovic, Snezana; Jerome, Gina; Jucker, Mathias; Karch, Celeste; Kasuga, Kensaku; Kawarabayashi, Takeshi; Klunk, William; Koeppe, Robert; Kuder-Buletta, Elke; Laske, Christoph; Lee, Jae-Hong; Levin, Johannes; Marcus, Daniel; Martins, Ralph; Mason, Neal Scott; Masters, Colin; Maue-Dreyfus, Denise; McDade, Eric; Montoya, Lucy; Mori, Hiroshi; Morris, John; Nagamatsu, Akem; Neimeyer, Katie; Noble, James; Norton, Joanne; Perrin, Richard; Raichle, Marc; Ringman, John; Roh, Jee Hoon; Salloway, Stephen; Schofield, Peter; Shimada, Hiroyuki; Shiroto, Tomoyo; Shoji, Mikio; Sigurdson, Wendy; Sohrabi, Hamid; Sparks, Paige; Suzuki, Kazushi; Swisher, Laura; Taddei, Kevin; Wang, Jen; Wang, Peter; Weiner, Mike; Wolfsberger, Mary; Xiong, Chengjie; Xu, Xiong; Pathology and Laboratory Medicine, School of MedicineNeurofilament light chain (NfL) is a promising fluid biomarker of disease progression for various cerebral proteopathies. Here we leverage the unique characteristics of the Dominantly Inherited Alzheimer Network and ultrasensitive immunoassay technology to demonstrate that NfL levels in the cerebrospinal fluid (n = 187) and serum (n = 405) are correlated with one another and are elevated at the presymptomatic stages of familial Alzheimer's disease. Longitudinal, within-person analysis of serum NfL dynamics (n = 196) confirmed this elevation and further revealed that the rate of change of serum NfL could discriminate mutation carriers from non-mutation carriers almost a decade earlier than cross-sectional absolute NfL levels (that is, 16.2 versus 6.8 years before the estimated symptom onset). Serum NfL rate of change peaked in participants converting from the presymptomatic to the symptomatic stage and was associated with cortical thinning assessed by magnetic resonance imaging, but less so with amyloid-β deposition or glucose metabolism (assessed by positron emission tomography). Serum NfL was predictive for both the rate of cortical thinning and cognitive changes assessed by the Mini-Mental State Examination and Logical Memory test. Thus, NfL dynamics in serum predict disease progression and brain neurodegeneration at the early presymptomatic stages of familial Alzheimer's disease, which supports its potential utility as a clinically useful biomarker.