- Browse by Author
Browsing by Author "Rodriguez-Aguayo, Cristian"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Allele-Specific Reprogramming of Cancer Metabolism by the Long Non-coding RNA CCAT2(Elsevier, 2016-02-18) Redis, Roxana S.; Vela, Luz E.; Lu, Weiqin; de Oliveira, Juliana Ferreira; Ivan, Cristina; Rodriguez-Aguayo, Cristian; Adamoski, Douglas; Pasculli, Barbara; Taguchi, Ayumu; Chen, Yunyun; Fernandez, Agustin F.; Valledor, Luis; Van Roosbroeck, Katrien; Chang, Samuel; Shah, Maitri; Kinnebrew, Garrett; Han, Leng; Atlasi, Yaser; Cheung, Lawrence H.; Huang, Gilbert Yuanjay; Monroig, Paloma; Ramirez, Marc S.; Ivkovic, Tina Catela; Van, Long; Ling, Hui; Gafà, Roberta; Kapitanovic, Sanja; Lanza, Giovanni; Bankson, James A.; Huang, Peng; Lai, Stephan Y.; Bast, Robert C.; Rosenblum, Michael G.; Radovich, Milan; Ivan, Mircea; Bartholomeusz, Geoffrey; Liang, Han; Fraga, Mario F.; Widger, William R.; Hanash, Samir; Berindan-Neagoe, Ioana; Lopez-Berestein, Gabriel; Ambrosio, Andre L.B.; Dias, Sandra M Gomes; Calin, George A.; Department of Surgery, IU School of MedicineAltered energy metabolism is a cancer hallmark as malignant cells tailor their metabolic pathways to meet their energy requirements. Glucose and glutamine are the major nutrients that fuel cellular metabolism, and the pathways utilizing these nutrients are often altered in cancer. Here, we show that the long ncRNA CCAT2, located at the 8q24 amplicon on cancer risk-associated rs6983267 SNP, regulates cancer metabolism in vitro and in vivo in an allele-specific manner by binding the Cleavage Factor I (CFIm) complex with distinct affinities for the two subunits (CFIm25 and CFIm68). The CCAT2 interaction with the CFIm complex fine-tunes the alternative splicing of Glutaminase (GLS) by selecting the poly(A) site in intron 14 of the precursor mRNA. These findings uncover a complex, allele-specific regulatory mechanism of cancer metabolism orchestrated by the two alleles of a long ncRNA.Item Author Correction: Hypoxia-mediated downregulation of miRNA biogenesis promotes tumour progression(Nature, 2020-06-03) Rupaimoole, Rajesha; Wu, Sherry Y.; Pradeep, Sunila; Ivan, Cristina; Pecot, Chad V.; Gharpure, Kshipra M.; Nagaraja, Archana S.; Armaiz-Pena, Guillermo N.; McGuire, Michael; Zand, Behrouz; Dalton, Heather J.; Filant, Justyna; Miller, Justin Bottsford; Lu, Chunhua; Sadaoui, Nouara C.; Mangala, Lingegowda S.; Taylor, Morgan; van den Beucken, Twan; Koch, Elizabeth; Rodriguez-Aguayo, Cristian; Huang, Li; Bar-Eli, Menashe; Wouters, Bradly G.; Radovich, Milan; Ivan, Mircea; Calin, George A.; Zhang, Wei; Lopez-Berestein, Gabriel; Sood, Anil K.; Medicine, School of MedicineThis Article contains an error in Fig. 4. During the preparation of Fig. 4d, the image representing showing E-CADHERIN expression under hypoxia conditions in A2780 cells was inadvertently taken from the image in Supplementary Fig. 15C showing E-CADHERIN expression under hypoxia conditions in SKOV3 cells. The correct version of Fig. 4 is shown below. The error has not been corrected in the PDF or HTML versions of the Article.Item Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA CCAT2 induce myeloid malignancies via unique SNP-specific RNA mutations(Cold Spring Harbor Laboratory Press, 2018-04) Shah, Maitri Y.; Ferracin, Manuela; Pileczki, Valentina; Chen, Baoqing; Redis, Roxana; Fabris, Linda; Zhang, Xinna; Ivan, Cristina; Shimizu, Masayoshi; Rodriguez-Aguayo, Cristian; Dragomir, Mihnea; Van Roosbroeck, Katrien; Almeida, Maria Ines; Ciccone, Maria; Nedelcu, Daniela; Cortez, Maria Angelica; Manshouri, Taghi; Calin, Steliana; Muftuoglu, Muharrem; Banerjee, Pinaki P.; Badiwi, Mustafa H.; Parker-Thornburg, Jan; Multani, Asha; Welsh, James William; Estecio, Marcos Roberto; Ling, Hui; Tomuleasa, Ciprian; Dima, Delia; Yang, Hui; Alvarez, Hector; You, M. James; Radovich, Milan; Shpall, Elizabeth; Fabbri, Muller; Rezvani, Katy; Girnita, Leonard; Berindan-Neagoe, Ioana; Maitra, Anirban; Verstovsek, Srdan; Foddle, Riccardo; Bueso-Ramos, Carlos; Gagea, Mihai; Manero, Guillermo Garcia; Calin, Goerge A.; BioHealth Informatics, School of Informatics and ComputingThe cancer-risk-associated rs6983267 single nucleotide polymorphism (SNP) and the accompanying long noncoding RNA CCAT2 in the highly amplified 8q24.21 region have been implicated in cancer predisposition, although causality has not been established. Here, using allele-specific CCAT2 transgenic mice, we demonstrate that CCAT2 overexpression leads to spontaneous myeloid malignancies. We further identified that CCAT2 is overexpressed in bone marrow and peripheral blood of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) patients. CCAT2 induces global deregulation of gene expression by down-regulating EZH2 in vitro and in vivo in an allele-specific manner. We also identified a novel non-APOBEC, non-ADAR, RNA editing at the SNP locus in MDS/MPN patients and CCAT2-transgenic mice. The RNA transcribed from the SNP locus in malignant hematopoietic cells have different allelic composition from the corresponding genomic DNA, a phenomenon rarely observed in normal cells. Our findings provide fundamental insights into the functional role of rs6983267 SNP and CCAT2 in myeloid malignancies.Item Hypoxia Mediated Downregulation of miRNA Biogenesis Promotes Tumor Progression(Nature Publishing Group, 2014-10-29) Rupaimoole, Rajesha; Wu, Sherry Y.; Pradeep, Sunila; Ivan, Cristina; Pecot, Chad V.; Gharpure, Kshipra M.; Nagaraja, Archana S.; Armaiz-Pena, Guillermo N.; McGuire, Michael; Zand, Behrouz; Dalton, Heather J.; Filant, Justyna; Miller, Justin Bottsford; Lu, Chunhua; Sadaoui, Nouara C.; Mangala, Lingegowda S.; Taylor, Morgan; van den Beucken, Twan; Koch, Elizabeth; Rodriguez-Aguayo, Cristian; Huang, Li; Bar-Eli, Menashe; Wouters, Bradly G.; Radovich, Milan; Ivan, Mircea; Calin, George A.; Zhang, Wei; Lopez-Berestein, Gabriel; Sood, Anil K.; Department of Surgery, IU School of MedicineCancer-related deregulation of miRNA biogenesis has been suggested, but the underlying mechanisms remain elusive. Here, we report a previously unrecognized effect of hypoxia in the downregulation of Drosha and Dicer in cancer cells that leads to dysregulation of miRNA biogenesis and increased tumor progression. We show that hypoxia mediated downregulation of Drosha is dependent on ETS1/ELK1 transcription factors. Moreover, mature miRNA array and deep sequencing studies reveal altered miRNA maturation in cells under hypoxic conditions. At a functional level, this phenomenon results in increased cancer progression in vitro and in vivo, and data from patient samples are suggestive of miRNA biogenesis downregulation in hypoxic tumors. Rescue of Drosha by siRNAs targeting ETS1/ELK1 in vivo results in significant tumor regression. These findings provide a new link in the mechanistic understanding of global miRNA downregulation in the tumor microenvironment.Item PRKAR1B-AS2 Long Noncoding RNA Promotes Tumorigenesis, Survival, and Chemoresistance via the PI3K/AKT/mTOR Pathway(MDPI, 2021-02-13) Elsayed, Abdelrahman M.; Bayraktar, Emine; Amero, Paola; Salama, Salama A.; Abdelaziz, Abdelaziz H.; Ismail, Raed S.; Zhang, Xinna; Ivan, Cristina; Sood, Anil K.; Lopez-Berestein, Gabriel; Rodriguez-Aguayo, Cristian; Medical and Molecular Genetics, School of MedicineMany long noncoding RNAs have been implicated in tumorigenesis and chemoresistance; however, the underlying mechanisms are not well understood. We investigated the role of PRKAR1B-AS2 long noncoding RNA in ovarian cancer (OC) and chemoresistance and identified potential downstream molecular circuitry underlying its action. Analysis of The Cancer Genome Atlas OC dataset, in vitro experiments, proteomic analysis, and a xenograft OC mouse model were implemented. Our findings indicated that overexpression of PRKAR1B-AS2 is negatively correlated with overall survival in OC patients. Furthermore, PRKAR1B-AS2 knockdown-attenuated proliferation, migration, and invasion of OC cells and ameliorated cisplatin and alpelisib resistance in vitro. In proteomic analysis, silencing PRKAR1B-AS2 markedly inhibited protein expression of PI3K-110α and abrogated the phosphorylation of PDK1, AKT, and mTOR, with no significant effect on PTEN. The RNA immunoprecipitation detected a physical interaction between PRKAR1B-AS2 and PI3K-110α. Moreover, PRKAR1B-AS2 knockdown by systemic administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with PRKAR1B-AS2–specific small interfering RNA enhanced cisplatin sensitivity in a xenograft OC mouse model. In conclusion, PRKAR1B-AS2 promotes tumor growth and confers chemoresistance by modulating the PI3K/AKT/mTOR pathway. Thus, targeting PRKAR1B-AS2 may represent a novel therapeutic approach for the treatment of OC patients.