- Browse by Author
Browsing by Author "Rodd, Zachary A."
Now showing 1 - 10 of 52
Results Per Page
Sort Options
Item Adolescent alcohol and nicotine exposure alters the adult response to alcohol use(Frontiers Media, 2023-11-22) Hauser, Sheketha R.; Waeiss, Robert A.; Deehan, Gerald A., Jr.; Engleman, Eric A.; Bell, Richard L.; Rodd, Zachary A.; Psychiatry, School of MedicineAdolescence through young adulthood is a unique period of neuronal development and maturation. Numerous agents can alter this process, resulting in long-term neurological and biological consequences. In the clinical literature, it is frequently reported that adolescent alcohol consumption increases the propensity to develop addictions, including alcohol use disorder (AUD), during adulthood. A general limitation of both clinical and human pre-clinical adolescent alcohol research is the high rate of co-using/abusing more than one drug during adolescence, such as co-using/abusing alcohol with nicotine. A primary goal of basic research is elucidating neuroadaptations produced by adolescent alcohol exposure/consumption that promote alcohol and other drug self-administration in adulthood. The long-term goal is to develop pharmacotherapeutics for the prevention or amelioration of these neuroadaptations. This review will focus on studies that have examined the effects of adolescent alcohol and nicotine exposure on adult alcohol consumption, the hypersensitivity of the mesolimbic dopaminergic system, and enhanced responses not only to alcohol but also to nicotine during adulthood. Again, the long-term goal is to identify potential cholinergic agents to prevent or ameliorate the consequences of, peri-adolescent alcohol abuse.Item Adolescent Intermittent Ethanol (AIE) Enhances the Dopaminergic Response to Ethanol within the Mesolimbic Pathway during Adulthood: Alterations in Cholinergic/Dopaminergic Genes Expression in the Nucleus Accumbens Shell(MDPI, 2021-10-29) Hauser, Sheketha R.; Mulholland, Patrick J.; Truitt, William A.; Waeiss, R. Aaron; Engleman, Eric A.; Bell, Richard L.; Rodd, Zachary A.; Psychiatry, School of MedicineA consistent preclinical finding is that exposure to alcohol during adolescence produces a persistent hyperdopaminergic state during adulthood. The current experiments determine that effects of Adolescent Intermittent Ethanol (AIE) on the adult neurochemical response to EtOH administered directly into the mesolimbic dopamine system, alterations in dendritic spine and gene expression within the nucleus accumbens shell (AcbSh), and if treatment with the HDACII inhibitor TSA could normalize the consequences of AIE. Rats were exposed to the AIE (4 g/kg ig; 3 days a week) or water (CON) during adolescence, and all testing occurred during adulthood. CON and AIE rats were microinjected with EtOH directly into the posterior VTA and dopamine and glutamate levels were recorded in the AcbSh. Separate groups of AIE and CON rats were sacrificed during adulthood and Taqman arrays and dendritic spine morphology assessments were performed. The data indicated that exposure to AIE resulted in a significant leftward and upward shift in the dose-response curve for an increase in dopamine in the AcbSh following EtOH microinjection into the posterior VTA. Taqman array indicated that AIE exposure affected the expression of target genes (Chrna7, Impact, Chrna5). The data indicated no alterations in dendritic spine morphology in the AcbSh or any alteration in AIE effects by TSA administration. Binge-like EtOH exposure during adolescence enhances the response to acute ethanol challenge in adulthood, demonstrating that AIE produces a hyperdopaminergic mesolimbic system in both male and female Wistar rats. The neuroadaptations induced by AIE in the AcbSh could be part of the biological basis of the observed negative consequences of adolescent binge-like alcohol exposure on adult drug self-administration behaviors.Item Alcohol drinking increases the dopamine-stimulating effects of ethanol and reduces D2 auto-receptor and group II metabotropic glutamate receptor function within the posterior ventral tegmental area of alcohol preferring (P) rats(Elsevier, 2016-10) Ding, Zheng-Ming; Ingraham, Cynthia M.; Rodd, Zachary A.; McBride, William J.; Psychiatry, School of MedicineRepeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the ‘EtOH’ than ‘Water’ groups (e.g., 150 mg% EtOH: to ~ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the ‘Water’ than ‘EtOH’ groups (e.g., 200 μM sulpiride: to ~ 190–240 vs 150–160% of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the ‘Water’ (to ~ 150–180% and 180–230% of baseline, respectively) but not the ‘EtOH’ groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA.Item The alcohol-preferring (P) and high-alcohol-drinking (HAD) rats – Animal Models of Alcoholism(Elsevier B.V., 2014-05) McBride, William J.; Rodd, Zachary A.; Bell, Richard L.; Lumeng, Lawrence; Li, Ting-Kai; Department of Psychiatry, IU School of MedicineThe objective of this article is to review the literature on the utility of using the selectively bred alcohol-preferring (P) and high-alcohol-drinking (HAD) lines of rats in studies examining high alcohol drinking in adults and adolescents, craving-like behavior, and the co-abuse of alcohol with other drugs. The P line of rats meets all of the originally proposed criteria for a suitable animal model of alcoholism. In addition, the P rat exhibits high alcohol-seeking behavior, demonstrates an alcohol deprivation effect (ADE) under relapse drinking conditions, consumes amounts of ethanol during adolescence equivalent to those consumed in adulthood, and co-abuses ethanol and nicotine. The P line also exhibits excessive binge-like alcohol drinking, attaining blood alcohol concentrations (BACs) of 200 mg% on a daily basis. The HAD replicate lines of rats have not been as extensively studied as the P rats. The HAD1,2 rats satisfy several of the criteria for an animal model of alcoholism, e.g., these rats will voluntarily consume ethanol in a free-choice situation to produce BACs between 50–200 mg%. The HAD1,2 rats also exhibit an ADE under repeated relapse conditions, and will demonstrate similar levels of ethanol intake during adolescence as seen in adults. Overall, the P and HAD1,2 rats have characteristics attributed to an early onset alcoholic, and can be used to study various aspects of alcohol use disorders.Item Assessment of Ethanol and Nicotine Interactions in the Rat Model: Pharmacotherapeutics, Adolescence, and the Mesolimbic System(2019-09) Waeiss, Robert Aaron; Truitt, William A.; Hudmon, Andy; Johnson, Philip L.; McBride, William J.; Rodd, Zachary A.Alcohol use disorder (AUD) and nicotine dependence often result in serious health problems and are top contributors to preventable deaths worldwide. Co-addiction to alcohol and nicotine is the most common form of polysubstance abuse. Epidemiological studies indicate that more than 80% of individuals diagnosed with AUD concurrently use nicotine. The prevalence of alcohol and nicotine comorbidity may stem from interconnected mechanisms underlying these disorders. A better understanding of how these drugs interact and the biological basis behind the high comorbidity rates could generate key targets for the development of more effective treatments for AUD and nicotine dependence. The following experiments utilized four similar overall groups consisting of vehicle, ethanol (EtOH), nicotine (NIC), and EtOH+NIC. Chapter Two investigated the efficacy of naltrexone and varenicline, the pharmacological ‘gold standards’ for treating AUD and nicotine dependence, on voluntary drug intake by rats selectively bred for high EtOH drinking. The results indicated that the standard treatments for AUD and nicotine dependence were effective at reducing consumption of the targeted reinforcer but neither reduced EtOH+NIC co-use/abuse. Chapter Three examined the effects of peri-adolescent EtOH drinking on the ability of NIC infused into the posterior ventral tegmental area (pVTA) to stimulate dopamine release within the nucleus accumbens (NAc) shell during adulthood. The results suggest a cross-sensitization to NIC produced by peri-adolescent EtOH consumption demonstrated by a leftward and upward shift in the dose response curve. Chapter Four investigated the effects of intra-pVTA infusions on NAc shell neurochemistry, EtOH reward within the NAc shell, and the role of brain-derived neurotrophic factor (BDNF) on EtOH reward within that region. The data indicated that only EtOH+NIC significantly increased glutamate, dopamine, and BDNF in the NAc shell. Repeated pretreatment with EtOH+NIC also enhanced EtOH reward in the NAc shell and BDNF infusions were sufficient to recapitulate these findings. Collectively, the data indicate that concurrent exposure to EtOH and NIC results in unique neuroadaptations that promote future drug use. The failure to develop effective pharmacotherapeutics for AUD or nicotine dependence could be associated with examining potential targets in models that fail to reflect the impact of polydrug exposure.Item Atrial Natriuretic Peptide (ANP): A Novel Mechanism for Reducing Ethanol Consumption and Seeking Behaviors in Female Alcohol Preferring (P) Rats(Elsevier, 2020-12) Hauser, Sheketha R.; Waeiss, Robert A.; Molosh, Andrei I.; Deehan, Gerald A., Jr.; Bell, Richard L.; McBride, William J.; Rodd, Zachary A.; Psychiatry, School of MedicineAtrial Naturietic Peptide (ANP) is a neuropeptide that regulates function of the hypothalamic-pituitary-adrenal (HPA) axis, immune and neuroimmune system, and epigenetic factors. Research has indicated that ANP may mediate alcohol intake, withdrawal, and craving like behaviors. ANP receptors are present in the mesocorticolimbic (MCL) reward pathway of the brain, which includes the nucleus accumbens (Acb) and the ventral tegmental area (VTA). The objectives of the present study were to examine the effects of ANP microinjected into Acb subregions (Shell (Sh), Core (Co), ventral to AcbSh) on operant ethanol (EtOH) self-administration and into posterior VTA (pVTA) on EtOH-seeking behavior of female alcohol-preferring (P) rats. In the first experiment, ANP (0, 10 μg, or 100 μg) was microinjected into subregions of the Acb to determine its effects on EtOH self-administration. In the second experiment, ANP was microinjected into pVTA to determine its effects on Pavlovian Spontaneous Recovery (PSR) of responding, a measure of context-induced EtOH-seeking behavior. Administration of ANP directly into the AcbSh significantly reduced EtOH self-administration compared to vehicle, whereas ANP into the AcbCo or areas directly ventral to the AcbSh did not alter responding for EtOH. Microinjection of ANP into the pVTA significantly reduced responding on the EtOH-associated lever during the PSR test. The data indicate that activation of ANP systems in the (a) AcbSh can inhibit EtOH intake, and (b) in the pVTA can inhibit EtOH-seeking behavior. The results suggest that manipulations of the ANP system could be a potential target for pharmacotherapeutic intervention to treat alcohol use disorder.Item CB1 Receptors Regulate Alcohol-Seeking Behavior and Alcohol Self-administration of Female Alcohol-Preferring (P) Rats(Elsevier, 2011-02) Getachew, Bruk; Hauser, Sheketha R.; Dhaher, Ronnie; Bell, Richard L.; Oster, Scott M.; McBride, William J.; Rodd, Zachary A.; Department of Psychiatry, IU School of MedicineRationale The endogenous cannabinoid (CB) system mediates a number of behaviors associated with drug-seeking and drug self-administration. In this study the effects of CB1 receptor manipulations on operant ethanol (EtOH) responding during EtOH-seeking, EtOH- relapse as well as on-going EtOH self-administration were determined. Methods Alcohol-preferring (P) rats were trained in 2-lever operant chambers to self-administer 15% EtOH (v/v) and water on a concurrent fixed-ratio 5 – fixed-ratio 1 (FR5-FR1) schedule of reinforcement in daily 1-hr sessions. After 10 weeks, rats underwent 7 extinction sessions, followed by 2 weeks in their home cages without access to EtOH or operant chambers. Rats were then returned to the operant chambers for testing of EtOH-seeking behavior (no EtOH present) for 4 sessions. After a week in their home cages following the EtOH-seeking test, rats were returned to the operant chambers with access to EtOH and water (relapse). Rats were then maintained in the operant chambers for daily 1-hr sessions with access to 15% EtOH and water for several weeks. Results The CB1 receptor antagonist (SR141716A), at doses of 1 and 2 mg/kg, i.p. reduced EtOH-seeking and transiently reduced EtOH self-administration during relapse and maintenance. Conversely, treatment with the CB1 receptor agonist CP, 55-940, at doses of 1 and 10 μg/kg i.p., increased EtOH-seeking and EtOH self-administration during relapse. Conclusions The results of this study demonstrate that activation of CB1 receptors are involved in regulating EtOH-seeking as well as the reinforcing effects of EtOH under relapse and on-going self-administration conditions.Item Changes in Gene Expression within the Extended Amygdala following Binge-Like Alcohol Drinking by Adolescent Alcohol-Preferring (P) Rats(Elsevier, 2014-02) McBride, William J.; Kimpel, Mark W.; McClintick, Jeanette N.; Ding, Zheng-Ming; Edenberg, Howard J.; Liang, Tiebing; Rodd, Zachary A.; Bell, Richard L.; Department of Psychiatry, IU School of MedicineThe objective of this study was to determine changes in gene expression within the extended amygdala following binge-like alcohol drinking by male adolescent alcohol-preferring (P) rats. Starting at 28 days of age, P rats were given concurrent access to 15 and 30 % ethanol for 3 one-h sessions/day for 5 consecutive days/week for 3 weeks. Rats were killed by decapitation 3 h after the first ethanol access session on the 15th day of drinking. RNA was prepared from micropunch samples of the nucleus accumbens shell (Acb-sh) and central nucleus of the amygdala (CeA). Ethanol intakes were 2.5 – 3.0 g/kg/session. There were 154 and 182 unique named genes that significantly differed (FDR = 0.2) between the water and ethanol group in the Acb-sh and CeA, respectively. Gene Ontology (GO) analyses indicated that adolescent binge drinking produced changes in biological processes involved with cell proliferation and regulation of cellular structure in the Acb-sh, and in neuron projection and positive regulation of cellular organization in the CeA. Ingenuity Pathway Analysis indicated that, in the Acb-sh, there were several major intracellular signaling pathways (e.g., cAMP-mediated and protein kinase A signaling pathways) altered by adolescent drinking, with 3-fold more genes up-regulated than down-regulated in the alcohol group. The cAMP-mediated signaling system was also up-regulated in the CeA of the alcohol group. Weighted gene co-expression network analysis indicated significant G-protein coupled receptor signaling and transmembrane receptor protein kinase signaling categories in the Acb-sh and CeA, respectively. Overall, the results of this study indicated that binge-like alcohol drinking by adolescent P rats is differentially altering the expression of genes in the Acb-sh and CeA, some of which are involved in intracellular signaling pathways and may produce changes in neuronal function.Item Chronic Ethanol Drinking by Alcohol-preferring Rats Increases the Sensitivity of the Mesolimbic Dopamine System to the Reinforcing and Stimulating Effects of Cocaine(2013-08-20) Oster, Scott M.; Murphy, James M.; Rodd, Zachary A.; Goodlett, Charles R.; Kinzig, Kimberly P.; Czachowski, Cristine; Hazer, JohnAlcohol and cocaine are commonly co-abused drugs, and those meeting criteria for both cocaine and alcohol use disorders experience more severe behavioral and health consequences than those with a single disorder. Chronic alcohol (ethanol) drinking increased the reinforcing and dopamine (DA) neuronal stimulating effects of ethanol within mesolimbic regions of the central nervous system (CNS) of alcohol-preferring (P) rats. The objectives of the current study were to determine if chronic continuous ethanol drinking produced: (1) alterations in the sensitivity of the nucleus accumbens shell (AcbSh) to the reinforcing effects of cocaine, (2) changes in the magnitude and time course of the local stimulating effects of cocaine on posterior ventral tegmental area (pVTA) DA neurons, and (3) a persistence of alterations in the stimulating effects of cocaine after a period of protracted abstinence. Female P rats received continuous, free-choice access to water and 15% v/v ethanol for at least 10 wk (continuous ethanol-drinking; CE) or access to water alone (ethanol-naïve; N). A third group of rats received the same period of ethanol access followed by 30 d of protracted abstinence from ethanol (ethanol-abstinent; Ab). CE and Ab rats consumed, on average, 6-7 g/kg/d of ethanol. Animals with a single cannula aimed at the AcbSh responded for injections of cocaine into the AcbSh during four initial operant sessions. Cocaine was not present in the self-infused solution for the subsequent three sessions, and cocaine access was restored during one final session. Animals with dual ipsilateral cannulae aimed at the AcbSh and the pVTA were injected with pulsed microinfusions of cocaine into the pVTA while DA content was collected for analysis through a microdialysis probe inserted into the AcbSh. During the initial four sessions, neither CE nor N rats self-infused artificial cerebrospinal fluid (aCSF) or 0.1 mM cocaine into the AcbSh. CE, but not N, rats self-administered 0.5 mM cocaine into the AcbSh, whereas both groups self-infused concentrations of 1.0, 2.0, 4.0, or 8.0 mM cocaine. When cocaine access was restored in Session 8, CE rats responded more on the active lever and obtained more infusions of 0.5, 1.0, 2.0, or 4.0 mM cocaine compared to N rats. Microinjection of aCSF into the pVTA did not alter AcbSh DA levels in N, CE, or Ab rats. Microinjections of 0.25 mM cocaine into the pVTA did not significantly alter AcbSh DA levels in N animals, moderately increased DA levels in CE rats, and greatly increased DA levels in Ab rats. Microinjections of 0.5 mM cocaine into the pVTA modestly increased AcbSh DA levels in N animals, robustly increased DA levels in CE rats, and did not significantly alter DA levels in Ab rats. Microinjections of 1.0 or 2.0 mM cocaine into the pVTA modestly increased AcbSh DA levels in N animals but decreased DA levels in CE and Ab rats. Overall, long-term continuous ethanol drinking by P rats enhanced both the reinforcing effects of cocaine within the AcbSh and the stimulatory and inhibitory effects of cocaine on pVTA DA neurons. Alterations in the stimulatory and inhibitory effects of cocaine on pVTA DA neurons were not only enduring, but also enhanced, following a period of protracted abstinence from ethanol exposure. Translationally, prevention of chronic and excessive alcohol intake in populations with a genetic risk for substance abuse may reduce the likelihood of subsequent cocaine use.Item Co-administration of ethanol and nicotine: the enduring alterations in the rewarding properties of nicotine and glutamate activity within the mesocorticolimbic system of female alcohol-preferring (P) rats(Springer-Verlag, 2015-12) Deehan, Gerald A.; Hauser, Sheketha R.; Waeiss, R. Aaron; Knight, Christopher P.; Toalston, Jamie E.; Truitt, William A.; McBride, William J.; Rodd, Zachary A.; Department of Psychiatry, IU School of MedicineRATIONALE: The co-abuse of ethanol (EtOH) and nicotine (NIC) increases the likelihood that an individual will relapse to drug use while attempting to maintain abstinence. There is limited research examining the consequences of long-term EtOH and NIC co-abuse. OBJECTIVES: The current experiments determined the enduring effects of chronic EtOH, NIC, or EtOH + NIC intake on the reinforcing properties of NIC and glutamate (GLU) activity within the mesocorticolimbic (MCL) system. METHODS: Alcohol-preferring (P) rats self-administered EtOH, Sacc + NIC, or EtOH + NIC combined for 10 weeks. The reinforcing properties of 0.1-3.0 μM NIC within the nucleus accumbens shell (AcbSh) were assessed following a 2-3-week drug-free period using intracranial self-administration (ICSA) procedures. The effects of EtOH, Sacc, Sacc + NIC, or EtOH + NIC intake on extracellular levels and clearance of glutamate (GLU) in the medial prefrontal cortex (mPFC) were also determined. RESULTS: Binge intake of EtOH (96-100 mg%) and NIC (21-27 mg/mL) were attained. All groups of P rats self-infused 3.0 μM NIC directly into the AcbSh, whereas only animals in the EtOH + NIC co-abuse group self-infused the 0.3 and 1.0 μM NIC concentrations. Additionally, self-administration of EtOH + NIC, but not EtOH, Sacc or Sacc + NIC, resulted in enduring increases in basal extracellular GLU levels in the mPFC. CONCLUSIONS: Overall, the co-abuse of EtOH + NIC produced enduring neuronal alterations within the MCL which enhanced the rewarding properties of NIC in the AcbSh and elevated extracellular GLU levels within the mPFC.