- Browse by Author
Browsing by Author "Robertson, Daniel H."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A Novel Open Access Web Portal for Integrating Mechanistic and Toxicogenomic Study Results(Oxford University Press, 2019-08-01) Sutherland, Jeffrey J.; Stevens, James L.; Johnson, Kamin; Elango, Navin; Webster, Yue W.; Mills, Bradley J.; Robertson, Daniel H.; Biochemistry and Molecular Biology, School of MedicineApplying toxicogenomics to improving the safety profile of drug candidates and crop protection molecules is most useful when it identifies relevant biological and mechanistic information that highlights risks and informs risk mitigation strategies. Pathway-based approaches, such as gene set enrichment analysis, integrate toxicogenomic data with known biological process and pathways. Network methods help define unknown biological processes and offer data reduction advantages. Integrating the 2 approaches would improve interpretation of toxicogenomic information. Barriers to the routine application of these methods in genome-wide transcriptomic studies include a need for "hands-on" computer programming experience, the selection of 1 or more analysis methods (eg pathway analysis methods), the sensitivity of results to algorithm parameters, and challenges in linking differential gene expression to variation in safety outcomes. To facilitate adoption and reproducibility of gene expression analysis in safety studies, we have developed Collaborative Toxicogeomics, an open-access integrated web portal using the Django web framework. The software, developed with the Python programming language, is modular, extensible and implements "best-practice" methods in computational biology. New study results are compared with over 4000 rodent liver experiments from Drug Matrix and open TG-GATEs. A unique feature of the software is the ability to integrate clinical chemistry and histopathology-derived outcomes with results from gene expression studies, leading to relevant mechanistic conclusions. We describe its application by analyzing the effects of several toxicants on liver gene expression and exemplify application to predicting toxicity study outcomes upon chronic treatment from expression changes in acute-duration studies.Item Predicting pharmacotherapeutic outcomes for type 2 diabetes: An evaluation of three approaches to leveraging electronic health record data from multiple sources(Elsevier, 2022-05) Tarumi, Shinji; Takeuchi, Wataru; Qi, Rong; Ning, Xia; Ruppert, Laura; Ban, Hideyuki; Robertson, Daniel H.; Schleyer, Titus; Kawamoto, Kensaku; Medicine, School of MedicineElectronic health record (EHR) data are increasingly used to develop prediction models to support clinical care, including the care of patients with common chronic conditions. A key challenge for individual healthcare systems in developing such models is that they may not be able to achieve the desired degree of robustness using only their own data. A potential solution—combining data from multiple sources—faces barriers such as the need for data normalization and concerns about sharing patient information across institutions. To address these challenges, we evaluated three alternative approaches to using EHR data from multiple healthcare systems in predicting the outcome of pharmacotherapy for type 2 diabetes mellitus (T2DM). Two of the three approaches, named Selecting Better (SB) and Weighted Average (WA), allowed the data to remain within institutional boundaries by using pre-built prediction models; the third, named Combining Data (CD), aggregated raw patient data into a single dataset. The prediction performance and prediction coverage of the resulting models were compared to single-institution models to help judge the relative value of adding external data and to determine the best method to generate optimal models for clinical decision support. The results showed that models using WA and CD achieved higher prediction performance than single-institution models for common treatment patterns. CD outperformed the other two approaches in prediction coverage, which we defined as the number of treatment patterns predicted with an Area Under Curve of 0.70 or more. We concluded that 1) WA is an effective option for improving prediction performance for common treatment patterns when data cannot be shared across institutional boundaries and 2) CD is the most effective approach when such sharing is possible, especially for increasing the range of treatment patterns that can be predicted to support clinical decision making.Item Text mining and portal development for gene-specific publications on Alzheimer's disease and other neurodegenerative diseases(Springer Nature, 2024-04-17) Liu, Jiannan; Wu, Huanmei; Robertson, Daniel H.; Zhang, Jie; Biomedical Engineering and Informatics, Luddy School of Informatics, Computing, and EngineeringBackground: Tremendous research efforts have been made in the Alzheimer's disease (AD) field to understand the disease etiology, progression and discover treatments for AD. Many mechanistic hypotheses, therapeutic targets and treatment strategies have been proposed in the last few decades. Reviewing previous work and staying current on this ever-growing body of AD publications is an essential yet difficult task for AD researchers. Methods: In this study, we designed and implemented a natural language processing (NLP) pipeline to extract gene-specific neurodegenerative disease (ND) -focused information from the PubMed database. The collected publication information was filtered and cleaned to construct AD-related gene-specific publication profiles. Six categories of AD-related information are extracted from the processed publication data: publication trend by year, dementia type occurrence, brain region occurrence, mouse model information, keywords occurrence, and co-occurring genes. A user-friendly web portal is then developed using Django framework to provide gene query functions and data visualizations for the generalized and summarized publication information. Results: By implementing the NLP pipeline, we extracted gene-specific ND-related publication information from the abstracts of the publications in the PubMed database. The results are summarized and visualized through an interactive web query portal. Multiple visualization windows display the ND publication trends, mouse models used, dementia types, involved brain regions, keywords to major AD-related biological processes, and co-occurring genes. Direct links to PubMed sites are provided for all recorded publications on the query result page of the web portal. Conclusion: The resulting portal is a valuable tool and data source for quick querying and displaying AD publications tailored to users' interested research areas and gene targets, which is especially convenient for users without informatic mining skills. Our study will not only keep AD field researchers updated with the progress of AD research, assist them in conducting preliminary examinations efficiently, but also offers additional support for hypothesis generation and validation which will contribute significantly to the communication, dissemination, and progress of AD research.Item Utilization of electronic health records for the assessment of adiponectin receptor autoantibodies during the progression of cardio-metabolic comorbidities(Probiologists, 2020) Pugia, Michael J.; Pradhan, Meeta; Qi, Rong; Eastes, Doreen L.; Vorsilak, Anna; Mills, Bradley J.; Baird, Zane; Wijeratne, Aruna; McAhren, Scott M.; Mosley, Amber; Shekhar, Anantha; Robertson, Daniel H.; Biochemistry and Molecular Biology, School of MedicineBackground: Diabetes is a complex, multi-symptomatic disease whose complications drives increases in healthcare costs as the diabetes prevalence grows rapidly world-wide. Real-world electronic health records (EHRs) coupled with patient biospecimens, biological understanding, and technologies can characterize emerging diagnostic autoimmune markers resulting from proteomic discoveries. Methods: Circulating autoantibodies for C‑terminal fragments of adiponectin receptor 1 (IgG-CTF) were measured by immunoassay to establish the reference range using midpoint samples from 1862 participants in a 20-year observational study of type 2 diabetes and cardiovascular arterial disease (CVAD) conducted by the Fairbanks Institute. The White Blood Cell elastase activity in these patients was assessed using immunoassays for Bikunin and Uristatin. Participants were assigned to four cohorts (healthy, T2D, CV, CV+T2D) based on analysis of their EHRs and the diagnostic biomarkers values and patient status were assessed ten-years post-sample. Results: The IgG-CTF reference range was determined to be 75–821 ng/mL and IgG-CTF out-ofrange values did not predict cohort or comorbidity as determined from the EHRs at 10 years after sample collection nor did IgG-CTF demonstrate a significant risk for comorbidity or death. Many patients at sample collection time had other conditions (hypertension, hyperlipidemia, or other risk factors) of which only hypertension, Uristatin and Bikunin values correlated with increased risk of developing additional comorbidities (odds ratio 2.58–13.11, P<0.05). Conclusions: This study confirms that retrospective analysis of biorepositories coupled with EHRs can establish reference ranges for novel autoimmune diagnostic markers and provide insights into prediction of specific health outcomes and correlations to other markers.