- Browse by Author
Browsing by Author "Rizvi, Batool"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item A pathway linking pulse pressure to dementia in adults with Down syndrome(Oxford University Press, 2024-05-09) Rizvi, Batool; Lao, Patrick J.; Sathishkumar, Mithra; Taylor, Lisa; Queder, Nazek; McMillan, Liv; Edwards, Natalie C.; Keator, David B.; Doran, Eric; Hom, Christy; Nguyen, Dana; Rosas, H. Diana; Lai, Florence; Schupf, Nicole; Gutierrez, Jose; Silverman, Wayne; Lott, Ira T.; Mapstone, Mark; Wilcock, Donna M.; Head, Elizabeth; Yassa, Michael A.; Brickman, Adam M.; Neurology, School of MedicineAdults with Down syndrome are less likely to have hypertension than neurotypical adults. However, whether blood pressure measures are associated with brain health and clinical outcomes in this population has not been studied in detail. Here, we assessed whether pulse pressure is associated with markers of cerebrovascular disease and is linked to a diagnosis of dementia in adults with Down syndrome via structural imaging markers of cerebrovascular disease and atrophy. The study included participants with Down syndrome from the Alzheimer’s Disease - Down Syndrome study (n = 195, age = 50.6 ± 7.2 years, 44% women, 18% diagnosed with dementia). Higher pulse pressure was associated with greater global, parietal and occipital white matter hyperintensity volume but not with enlarged perivascular spaces, microbleeds or infarcts. Using a structural equation model, we found that pulse pressure was associated with greater white matter hyperintensity volume, which in turn was related to increased neurodegeneration, and subsequent dementia diagnosis. Pulse pressure is an important determinant of brain health and clinical outcomes in individuals with Down syndrome despite the low likelihood of frank hypertension.Item Cerebrovascular disease drives Alzheimer plasma biomarker concentrations in adults with Down syndrome(medRxiv, 2023-11-30) Edwards, Natalie C.; Lao, Patrick J.; Alshikho, Mohamad J.; Ericsson, Olivia M.; Rizvi, Batool; Petersen, Melissa E.; O’Bryant, Sid; Flores-Aguilar, Lisi; Simoes, Sabrina; Mapstone, Mark; Tudorascu, Dana L.; Janelidze, Shorena; Hansson, Oskar; Handen, Benjamin L.; Christian, Bradley T.; Lee, Joseph H.; Lai, Florence; Rosas, H. Diana; Zaman, Shahid; Lott, Ira T.; Yassa, Michael A.; Gutierrez, José; Wilcock, Donna M.; Head, Elizabeth; Brickman, Adam M.; Neurology, School of MedicineImportance: By age 40 years over 90% of adults with Down syndrome (DS) have Alzheimer's disease (AD) pathology and most progress to dementia. Despite having few systemic vascular risk factors, individuals with DS have elevated cerebrovascular disease (CVD) markers that track with the clinical progression of AD, suggesting a role for CVD that is hypothesized to be mediated by inflammatory factors. Objective: To examine the pathways through which small vessel CVD contributes to AD-related pathophysiology and neurodegeneration in adults with DS. Design: Cross sectional analysis of neuroimaging, plasma, and clinical data. Setting: Participants were enrolled in Alzheimer's Biomarker Consortium - Down Syndrome (ABC-DS), a multisite study of AD in adults with DS. Participants: One hundred eighty-five participants (mean [SD] age=45.2 [9.3] years) with available MRI and plasma biomarker data were included. White matter hyperintensity (WMH) volumes were derived from T2-weighted FLAIR MRI scans and plasma biomarker concentrations of amyloid beta (Aβ42/Aβ40), phosphorylated tau (p-tau217), astrocytosis (glial fibrillary acidic protein, GFAP), and neurodegeneration (neurofilament light chain, NfL) were measured with ultrasensitive immunoassays. Main outcomes and measures: We examined the bivariate relationships of WMH, Aβ42/Aβ40, p-tau217, and GFAP with age-residualized NfL across AD diagnostic groups. A series of mediation and path analyses examined causal pathways linking WMH and AD pathophysiology to promote neurodegeneration in the total sample and groups stratified by clinical diagnosis. Results: There was a direct and indirect bidirectional effect through GFAP of WMH on p-tau217 concentration, which was associated with NfL concentration in the entire sample. Among cognitively stable participants, WMH was directly and indirectly, through GFAP, associated with p-tau217 concentration, and in those with MCI, there was a direct effect of WMH on p-tau217 and NfL concentrations. There were no associations of WMH with biomarker concentrations among those diagnosed with dementia. Conclusions and relevance: The findings suggest that among individuals with DS, CVD promotes neurodegeneration by increasing astrocytosis and tau pathophysiology in the presymptomatic phases of AD. This work joins an emerging literature that implicates CVD and its interface with neuroinflammation as a core pathological feature of AD in adults with DS.Item Cerebrovascular disease emerges with age and Alzheimer's disease in adults with Down syndrome(Springer Nature, 2024-05-29) Lao, Patrick; Edwards, Natalie; Flores‑Aguilar, Lisi; Alshikho, Mohamad; Rizvi, Batool; Tudorascu, Dana; Rosas, H. Diana; Yassa, Michael; Christian, Bradley T.; Mapstone, Mark; Handen, Benjamin; Zimmerman, Molly E.; Gutierrez, Jose; Wilcock, Donna; Head, Elizabeth; Brickman, Adam M.; Neurology, School of MedicineAdults with Down syndrome have a genetic form of Alzheimer's disease (AD) and evidence of cerebrovascular disease across the AD continuum, despite few systemic vascular risk factors. The onset and progression of AD in Down syndrome is highly age-dependent, but it is unknown at what age cerebrovascular disease emerges and what factors influence its severity. In the Alzheimer's Biomarker Consortium-Down Syndrome study (ABC-DS; n = 242; age = 25-72), we estimated the age inflection point at which MRI-based white matter hyperintensities (WMH), enlarged perivascular spaces (PVS), microbleeds, and infarcts emerge in relation to demographic data, risk factors, amyloid and tau, and AD diagnosis. Enlarged PVS and infarcts appear to develop in the early 30s, while microbleeds, WMH, amyloid, and tau emerge in the mid to late 30s. Age-residualized WMH were higher in women, in individuals with dementia, and with lower body mass index. Participants with hypertension and APOE-ε4 had higher age-residualized PVS and microbleeds, respectively. Lifespan trajectories demonstrate a dramatic cerebrovascular profile in adults with Down syndrome that appears to evolve developmentally in parallel with AD pathophysiology approximately two decades prior to dementia symptoms.Item Cerebrovascular disease is associated with Alzheimer's plasma biomarker concentrations in adults with Down syndrome(Oxford University Press, 2024-09-25) Edwards, Natalie C.; Lao, Patrick J.; Alshikho, Mohamad J.; Ericsson, Olivia M.; Rizvi, Batool; Petersen, Melissa E.; O’Bryant, Sid; Flores Aguilar, Lisi; Simoes, Sabrina; Mapstone, Mark; Tudorascu, Dana L.; Janelidze, Shorena; Hansson, Oskar; Handen, Benjamin L.; Christian, Bradley T.; Lee, Joseph H.; Lai, Florence; Rosas, H. Diana; Zaman, Shahid; Lott, Ira T.; Yassa, Michael A.; Alzheimer’s Biomarkers Consortium–Down Syndrome (ABC-DS) Investigators; Gutierrez, José; Wilcock, Donna M.; Head, Elizabeth; Brickman, Adam M.; Neurology, School of MedicineBy age 40 years, over 90% of adults with Down syndrome have Alzheimer's disease pathology and most progress to dementia. Despite having few systemic vascular risk factors, individuals with Down syndrome have elevated cerebrovascular disease markers that track with the clinical progression of Alzheimer's disease, suggesting a role of cerebrovascular disease that is hypothesized to be mediated by inflammatory factors. This study examined the pathways through which small vessel cerebrovascular disease contributes to Alzheimer's disease-related pathophysiology and neurodegeneration in adults with Down syndrome. One hundred eighty-five participants from the Alzheimer's Biomarkers Consortium-Down Syndrome [mean (SD) age = 45.2 (9.3) years] with available MRI and plasma biomarker data were included in this study. White matter hyperintensity (WMH) volumes were derived from T2-weighted fluid-attenuated inversion recovery MRI scans, and plasma biomarker concentrations of amyloid beta 42/40, phosphorylated tau 217, astrocytosis (glial fibrillary acidic protein) and neurodegeneration (neurofilament light chain) were measured with ultrasensitive immunoassays. We examined the bivariate relationships of WMH, amyloid beta 42/40, phosphorylated tau 217 and glial fibrillary acidic protein with age-residualized neurofilament light chain across Alzheimer's disease diagnostic groups. A series of mediation and path analyses examined statistical pathways linking WMH and Alzheimer's disease pathophysiology to promote neurodegeneration in the total sample and groups stratified by clinical diagnosis. There was a direct and indirect bidirectional effect through the glial fibrillary acidic protein of WMH on phosphorylated tau 217 concentration, which was associated with neurofilament light chain concentration in the entire sample. Amongst cognitively stable participants, WMH was directly and indirectly, through glial fibrillary acidic protein, associated with phosphorylated tau 217 concentration, and in those with mild cognitive impairment, there was a direct effect of WMH on phosphorylated tau 217 and neurofilament light chain concentrations. There were no associations of WMH with biomarker concentrations among those diagnosed with dementia. The findings from this cross-sectional study suggest that among individuals with Down syndrome, cerebrovascular disease promotes neurodegeneration by increasing astrocytosis and tau pathophysiology in the presymptomatic phases of Alzheimer's disease, but future studies will need to confirm these associations with longitudinal data. This work joins an emerging literature that implicates cerebrovascular disease and its interface with neuroinflammation as a core pathological feature of Alzheimer's disease in adults with Down syndrome.Item Independent and interactive contributions of cerebrovascular disease, neuroinflammation, and tau pathophysiology to Alzheimer’s disease‐related diagnostic conversion in adults with Down syndrome(Wiley, 2025-01-09) Edwards, Natalie C.; Lao, Patrick J.; Alshikho, Mohamad J.; Rizvi, Batool; Flores Aguilar, Lisi; Petersen, Melissa; O’Bryant, Sid E.; Tudorascu, Dana; Handen, Benjamin L.; Gutierrez, Jose; Wilcock, Donna M.; Head, Elizabeth; Brickman, Adam M.; Neurology, School of MedicineBackground: By age 40 years, adults with Down syndrome (DS) develop Alzheimer’s disease (AD) pathology and progress to dementia in their 60s. Despite minimal systemic vascular risk factors, individuals with DS have MRI evidence of cerebrovascular injury that progresses with AD severity, suggesting an intrinsic vascular component to DS‐AD that may interact with neuroinflammatory processes to promote tau pathology and cognitive decline. In the current study we examined whether cerebrovascular disease (CVD) burden and inflammation/astrocytosis independently and interactively were associated with incident diagnosis among adults with DS. Method: This study included 149 participants from the Alzheimer Biomarkers Consortium – Down Syndrome (baseline mean age[SD]=44.6[9] years) with available baseline MRI, plasma biomarker data, and at least two time‐points of clinical consensus diagnosis data (i.e., cognitively stable, mild cognitive impairment [MCI], and clinical AD) who were classified as cognitively stable or MCI at baseline. Logistic regression models assessed if baseline small vessel CVD, operationalized as white matter hyperintensity (WMH) volume, and plasma glial fibrillary acidic protein (GFAP), Aβ42/Aβ40, p‐tau217, and neurofilament light (NfL) concentrations are associated with conversion from a milder diagnosis to a more severe clinical diagnosis. Mediation models examined relationships between biomarkers and diagnostic conversion. All models adjusted for study site, sex/gender, latency between visit dates, and age group (below or above/equal to the median age of the sample). Result: Diagnostic conversion occurred in 26% of the sample. Higher baseline WMH volume (OR 1.08 [1.01, 1.81]), GFAP (OR 1.006 [1.003, 1.01]), and p‐tau217 (OR 20.56 [5.01, 112.43]), but not NfL nor Aβ42/Aβ40 concentrations were associated with higher odds of conversion to more severe cognitive impairment. GFAP concentration mediated the relationship between WMH and diagnostic conversion (ACME 0.05 [0.01, 0.1], p=0.006). P‐tau217 concentration mediated the relationship between GFAP and diagnostic conversion (ACME 0.13 [0.05, 0.23], p=0.004). Conclusion: Our findings suggest that among individuals with DS, CVD promotes AD‐related clinical progression by increasing astrocytosis which, in turn, promotes tau pathophysiology and downstream MCI and AD incidence. The results implicate CVD and its interface with inflammation as a core feature of AD in DS.Item Longitudinal changes in neuroimaging markers of small vessel disease: Implications for clinical trials(Wiley, 2025-01-09) Lao, Patrick J.; Edwards, Natalie C.; Flores-Aguilar, Lisi; Rizvi, Batool; Smith, Anna C.; Tudorascu, Dana; Rosas, H. Diana; Yassa, Michael A.; Handen, Benjamin L.; Christian, Bradley T.; Gutierrez, Jose; Wilcock, Donna M.; Head, Elizabeth; Brickman, Adam M.; Neurology, School of MedicineBackground: Adults with Down syndrome (DS) overproduce amyloid precursor protein, develop amyloid plaques at an early age, and are diagnosed with Alzheimer’s disease (AD) dementia at a high frequency. There is emerging evidence that cerebrovascular disease is elevated across the AD continuum in older adults with DS, independent of age and vascular risk, around the same time as amyloid and tau, but the regional rates of accumulation within individuals are unknown. Method: Adults with DS from the multisite Alzheimer’s Biomarker Consortium‐Down Syndrome study (ABC‐DS; n=78; age=50±6; 40% women) have two timepoints of T2 FLAIR MRI (1.2±0.6 years apart) quantified as white matter hyperintensity volume (WMH), which represents ischemic small vessel disease. Participants underwent consensus diagnosis at both timepoints (59% Cognitively‐Stable at both timepoints, 9% Cognitively‐Stable to MCI‐DS, 8% MCI‐DS at both timepoints, 14% MCI‐DS to AD, 10% AD at both timepoints). The annual rate of change in frontal, temporal, parietal, and occipital WMH volume was assessed, adjusting for baseline WMH volume. Result: The annual rate of change in frontal WMH was not significantly different by diagnosis. The annual rate of change in temporal (0.7 [0.4, 1.1], p<0.001) and in occipital WMH (1.6 [0.7, 2.5], p=0.0008) was faster in the group that remained AD at both timepoints compared to the group that remained Cognitively‐Stable at both timepoints. The annual rate of change in parietal WMH was greater in the group that progressed from MCI‐DS to AD (0.6 [0.1, 1.0], p=0.02) and in the group that remained AD at both timepoints (1.1 [0.6, 1.7], p=0.0002) compared to the group that remained Cognitively‐Stable at both timepoints. Conclusion: In adults with DS, parietal WMH accumulates fastest in those that progress to or have a diagnosis of AD, while temporal and occipital WMH accumulate fastest in those with a diagnosis of AD. Posteriorly distributed WMH may have specificity for AD progression in adults with DS with implications for anti‐amyloid therapeutics that have cerebrovascular side effects.