- Browse by Author
Browsing by Author "Ritz, Jerome"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item An activated Th17-prone T cell subset involved in chronic graft-versus-host disease sensitive to pharmacological inhibition(American Society for Clinical Investigation, 2017-06-15) Forcade, Edouard; Paz, Katelyn; Flynn, Ryan; Griesenauer, Brad; Amet, Tohti; Li, Wei; Liu, Liangyi; Bakoyannis, Giorgos; Jiang, Di; Chu, Hong Wei; Lobera, Mercedes; Yang, Jianfei; Wilkes, David S.; Du, Jing; Gartlan, Kate; Hill, Geoffrey R.; MacDonald, Kelli P.A.; Espada, Eduardo L.; Blanco, Patrick; Serody, Jonathan S.; Koreth, John; Cutler, Corey S.; Antin, Joseph H.; Soiffer, Robert J.; Ritz, Jerome; Paczesny, Sophie; Blazar, Bruce R.; Pediatrics, School of MedicineChronic graft-versus-host disease (cGvHD) remains a major complication of allogeneic stem cell transplantation requiring novel therapies. CD146 and CCR5 are expressed by activated T cells and associated with increased T cell migration capacity and Th17 polarization. We performed a multiparametric flow cytometry analysis in a cohort of 40 HSCT patients together with a cGvHD murine model to understand the role of CD146-expressing subsets. We observed an increased frequency of CD146+ CD4 T cells in the 20 patients with active cGvHD with enhanced RORγt expression. This Th17-prone subset was enriched for cells coexpressing CD146 and CCR5 that harbor mixed Th1/Th17 features and were more frequent in cGvHD patients. Utilizing a murine cGvHD model with bronchiolitis obliterans (BO), we observed that donor T cells from CD146-deficient mice versus those from WT mice caused significantly reduced pulmonary cGvHD. Reduced cGvHD was not the result of failed germinal center B cell or T follicular helper cell generation. Instead, CD146-deficient T cells had significantly lower pulmonary macrophage infiltration and T cell CCR5, IL-17, and IFN-γ coexpression, suggesting defective pulmonary end-organ effector mechanisms. We, thus, evaluated the effect of TMP778, a small-molecule RORγt activity inhibitor. TMP778 markedly alleviated cGvHD in murine models similarly to agents targeting the Th17 pathway, such as STAT3 inhibitor or IL-17-blocking antibody. Our data suggest CD146-expressing T cells as a cGvHD biomarker and suggest that targeting the Th17 pathway may represent a promising therapy for cGvHD.Item The Biology of Chronic Graft-versus-Host Disease: A Task Force Report from the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease(Elsevier, 2017-02) Cooke, Kenneth R.; Luznik, Leo; Sarantopoulos, Stefanie; Hakim, Frances T.; Jagasia, Madan; Fowler, Daniel H.; van den Brink, Marcel R. M.; Hansen, John A.; Parkman, Robertson; Miklos, David B.; Martin, Paul J.; Paczesny, Sophie; Vogelsang, Georgia; Pavletic, Steven; Ritz, Jerome; Schultz, Kirk R.; Blazar, Bruce R.; Department of Pediatrics, School of MedicineChronic graft-versus-host disease (GVHD) is the leading cause of late, nonrelapse mortality and disability in allogeneic hematopoietic cell transplantation recipients and a major obstacle to improving outcomes. The biology of chronic GVHD remains enigmatic, but understanding the underpinnings of the immunologic mechanisms responsible for the initiation and progression of disease is fundamental to developing effective prevention and treatment strategies. The goals of this task force review are as follows: • Summarize the current state of the science regarding pathogenic mechanisms of chronic GVHD and critical knowledge gaps. • Develop working hypotheses/overriding concepts for chronic GVHD development. • Define the usefulness of current preclinical models to test working hypotheses and ultimately discover and develop new therapeutic strategies. • Identify shortcomings of preclinical models, and define criteria for the creation of additional models to address these limitations. This document is intended as a review of our understanding of chronic GVHD biology and therapies resulting from preclinical studies, and as a platform for developing innovative clinical strategies to prevent and treat chronic GVHD.