- Browse by Author
Browsing by Author "Ritchie, Marylyn D."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item A research agenda to support the development and implementation of genomics-based clinical informatics tools and resources(Oxford University Press, 2022) Wiley, Ken; Findley, Laura; Goldrich, Madison; Rakhra-Burris, Tejinder K.; Stevens, Ana; Williams, Pamela; Bult, Carol J.; Chisholm, Rex; Deverka, Patricia; Ginsburg, Geoffrey S.; Green, Eric D.; Jarvik, Gail; Mensah, George A.; Ramos, Erin; Relling, Mary V.; Roden, Dan M.; Rowley, Robb; Alterovitz, Gil; Aronson, Samuel; Bastarache, Lisa; Cimino, James J.; Crowgey, Erin L.; Del Fiol, Guilherme; Freimuth, Robert R.; Hoffman, Mark A.; Jeff, Janina; Johnson, Kevin; Kawamoto, Kensaku; Madhavan, Subha; Mendonca, Eneida A.; Ohno-Machado, Lucila; Pratap, Siddharth; Overby Taylor, Casey; Ritchie, Marylyn D.; Walton, Nephi; Weng, Chunhua; Zayas-Cabán, Teresa; Manolio, Teri A.; Williams, Marc S.; Pediatrics, School of MedicineObjective: The Genomic Medicine Working Group of the National Advisory Council for Human Genome Research virtually hosted its 13th genomic medicine meeting titled "Developing a Clinical Genomic Informatics Research Agenda". The meeting's goal was to articulate a research strategy to develop Genomics-based Clinical Informatics Tools and Resources (GCIT) to improve the detection, treatment, and reporting of genetic disorders in clinical settings. Materials and methods: Experts from government agencies, the private sector, and academia in genomic medicine and clinical informatics were invited to address the meeting's goals. Invitees were also asked to complete a survey to assess important considerations needed to develop a genomic-based clinical informatics research strategy. Results: Outcomes from the meeting included identifying short-term research needs, such as designing and implementing standards-based interfaces between laboratory information systems and electronic health records, as well as long-term projects, such as identifying and addressing barriers related to the establishment and implementation of genomic data exchange systems that, in turn, the research community could help address. Discussion: Discussions centered on identifying gaps and barriers that impede the use of GCIT in genomic medicine. Emergent themes from the meeting included developing an implementation science framework, defining a value proposition for all stakeholders, fostering engagement with patients and partners to develop applications under patient control, promoting the use of relevant clinical workflows in research, and lowering related barriers to regulatory processes. Another key theme was recognizing pervasive biases in data and information systems, algorithms, access, value, and knowledge repositories and identifying ways to resolve them.Item Characterizing Heterogeneity in Neuroimaging, Cognition, Clinical Symptoms, and Genetics Among Patients With Late-Life Depression(American Medical Association, 2022) Wen, Junhao; Fu, Cynthia H. Y.; Tosun, Duygu; Veturi, Yogasudha; Yang, Zhijian; Abdulkadir, Ahmed; Mamourian, Elizabeth; Srinivasan, Dhivya; Skampardoni, Ioanna; Singh, Ashish; Nawani, Hema; Bao, Jingxuan; Erus, Guray; Shou, Haochang; Habes, Mohamad; Doshi, Jimit; Varol, Erdem; Mackin, R. Scott; Sotiras, Aristeidis; Fan, Yong; Saykin, Andrew J.; Sheline, Yvette I.; Shen, Li; Ritchie, Marylyn D.; Wolk, David A.; Albert, Marilyn; Resnick, Susan M.; Davatzikos, Christos; iSTAGING consortium; ADNI; BIOCARD; BLSA; Radiology and Imaging Sciences, School of MedicineImportance: Late-life depression (LLD) is characterized by considerable heterogeneity in clinical manifestation. Unraveling such heterogeneity might aid in elucidating etiological mechanisms and support precision and individualized medicine. Objective: To cross-sectionally and longitudinally delineate disease-related heterogeneity in LLD associated with neuroanatomy, cognitive functioning, clinical symptoms, and genetic profiles. Design, setting, and participants: The Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) study is an international multicenter consortium investigating brain aging in pooled and harmonized data from 13 studies with more than 35 000 participants, including a subset of individuals with major depressive disorder. Multimodal data from a multicenter sample (N = 996), including neuroimaging, neurocognitive assessments, and genetics, were analyzed in this study. A semisupervised clustering method (heterogeneity through discriminative analysis) was applied to regional gray matter (GM) brain volumes to derive dimensional representations. Data were collected from July 2017 to July 2020 and analyzed from July 2020 to December 2021. Main outcomes and measures: Two dimensions were identified to delineate LLD-associated heterogeneity in voxelwise GM maps, white matter (WM) fractional anisotropy, neurocognitive functioning, clinical phenotype, and genetics. Results: A total of 501 participants with LLD (mean [SD] age, 67.39 [5.56] years; 332 women) and 495 healthy control individuals (mean [SD] age, 66.53 [5.16] years; 333 women) were included. Patients in dimension 1 demonstrated relatively preserved brain anatomy without WM disruptions relative to healthy control individuals. In contrast, patients in dimension 2 showed widespread brain atrophy and WM integrity disruptions, along with cognitive impairment and higher depression severity. Moreover, 1 de novo independent genetic variant (rs13120336; chromosome: 4, 186387714; minor allele, G) was significantly associated with dimension 1 (odds ratio, 2.35; SE, 0.15; P = 3.14 ×108) but not with dimension 2. The 2 dimensions demonstrated significant single-nucleotide variant-based heritability of 18% to 27% within the general population (N = 12 518 in UK Biobank). In a subset of individuals having longitudinal measurements, those in dimension 2 experienced a more rapid longitudinal change in GM and brain age (Cohen f2 = 0.03; P = .02) and were more likely to progress to Alzheimer disease (Cohen f2 = 0.03; P = .03) compared with those in dimension 1 (N = 1431 participants and 7224 scans from the Alzheimer's Disease Neuroimaging Initiative [ADNI], Baltimore Longitudinal Study of Aging [BLSA], and Biomarkers for Older Controls at Risk for Dementia [BIOCARD] data sets). Conclusions and relevance: This study characterized heterogeneity in LLD into 2 dimensions with distinct neuroanatomical, cognitive, clinical, and genetic profiles. This dimensional approach provides a potential mechanism for investigating the heterogeneity of LLD and the relevance of the latent dimensions to possible disease mechanisms, clinical outcomes, and responses to interventions.Item Efavirenz Pharmacogenetics and Weight Gain Following Switch to Integrase Inhibitor-Containing Regimens(Oxford University Press, 2021) Leonard, Michael A.; Cindi, Zinhle; Bradford, Yuki; Bourgi, Kassem; Koethe, John; Turner, Megan; Norwood, Jamison; Woodward, Beverly; Erdem, Husamettin; Basham, Rebecca; Baker, Paxton; Rebeiro, Peter F.; Sterling, Timothy R.; Hulgan, Todd; Daar, Eric S.; Gulick, Roy; Riddler, Sharon A.; Sinxadi, Phumla; Ritchie, Marylyn D.; Haas, David W.; Medicine, School of MedicineBackground: Unwanted weight gain affects some people living with human immunodeficiency virus (HIV) who are prescribed integrase strand transfer inhibitors (INSTIs). Mechanisms and risk factors are incompletely understood. Methods: We utilized 2 cohorts to study pharmacogenetics of weight gain following switch from efavirenz- to INSTI-based regimens. In an observational cohort, we studied weight gain at 48 weeks following switch from efavirenz- to INSTI-based regimens among patients who had been virologically suppressed for at least 2 years at a clinic in the United States. Associations were characterized with CYP2B6 and UGT1A1 genotypes that affect efavirenz and INSTI metabolism, respectively. In a clinical trials cohort, we studied weight gain at 48 weeks among treatment-naive participants who were randomized to receive efavirenz-containing regimens in AIDS Clinical Trials Group studies A5095, A5142, and A5202 and did not receive INSTIs. Results: In the observational cohort (n = 61), CYP2B6 slow metabolizers had greater weight gain after switch (P = .01). This was seen following switch to elvitegravir or raltegravir, but not dolutegravir. UGT1A1 genotype was not associated with weight gain. In the clinical trials cohort (n = 462), CYP2B6 slow metabolizers had lesser weight gain at week 48 among participants receiving efavirenz with tenofovir disoproxil fumarate (P = .001), but not those receiving efavirenz with abacavir (P = .65). Findings were consistent when stratified by race/ethnicity and by sex. Conclusions: Among patients who switched from efavirenz- to INSTI-based therapy, CYP2B6 genotype was associated with weight gain, possibly reflecting withdrawal of the inhibitory effect of higher efavirenz concentrations on weight gain. The difference by concomitant nucleoside analogue is unexplained.Item Genomic loci influence patterns of structural covariance in the human brain(National Academy of Science, 2023) Wen, Junhao; Nasrallah, Ilya M.; Abdulkadir, Ahmed; Satterthwaite, Theodore D.; Yang, Zhijian; Erus, Guray; Robert-Fitzgerald, Timothy; Singh, Ashish; Sotiras, Aristeidis; Boquet-Pujadas, Aleix; Mamourian, Elizabeth; Doshi, Jimit; Cui, Yuhan; Srinivasan, Dhivya; Skampardoni, Ioanna; Chen, Jiong; Hwang, Gyujoon; Bergman, Mark; Bao, Jingxuan; Veturi, Yogasudha; Zhou, Zhen; Yang, Shu; Dazzan, Paola; Kahn, Rene S.; Schnack, Hugo G.; Zanetti, Marcus V.; Meisenzahl, Eva; Busatto, Geraldo F.; Crespo-Facorro, Benedicto; Pantelis, Christos; Wood, Stephen J.; Zhuo, Chuanjun; Shinohara, Russell T.; Gur, Ruben C.; Gur, Raquel E.; Koutsouleris, Nikolaos; Wolf, Daniel H.; Saykin, Andrew J.; Ritchie, Marylyn D.; Shen, Li; Thompson, Paul M.; Colliot, Olivier; Wittfeld, Katharina; Grabe, Hans J.; Tosun, Duygu; Bilgel, Murat; An, Yang; Marcus, Daniel S.; LaMontagne, Pamela; Heckbert, Susan R.; Austin, Thomas R.; Launer, Lenore J.; Espeland, Mark; Masters, Colin L.; Maruff, Paul; Fripp, Jurgen; Johnson, Sterling C.; Morris, John C.; Albert, Marilyn S.; Bryan, R. Nick; Resnick, Susan M.; Fan, Yong; Habes, Mohamad; Wolk, David; Shou, Haochang; Davatzikos, Christos; Radiology and Imaging Sciences, School of MedicineNormal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.Item A graph-based integration of multimodal brain imaging data for the detection of early mild cognitive impairment (E-MCI)(Springer, 2013) Kim, Dokyoon; Kim, Sungeun; Risacher, Shannon L.; Shen, Li; Ritchie, Marylyn D.; Weiner, Michael W.; Saykin, Andrew J.; Nho, Kwangsik; Radiology and Imaging Sciences, School of MedicineAlzheimer's disease (AD) is the most common cause of dementia in older adults. By the time an individual has been diagnosed with AD, it may be too late for potential disease modifying therapy to strongly influence outcome. Therefore, it is critical to develop better diagnostic tools that can recognize AD at early symptomatic and especially pre-symptomatic stages. Mild cognitive impairment (MCI), introduced to describe a prodromal stage of AD, is presently classified into early and late stages (E-MCI, L-MCI) based on severity. Using a graph-based semi-supervised learning (SSL) method to integrate multimodal brain imaging data and select valid imaging-based predictors for optimizing prediction accuracy, we developed a model to differentiate E-MCI from healthy controls (HC) for early detection of AD. Multimodal brain imaging scans (MRI and PET) of 174 E-MCI and 98 HC participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort were used in this analysis. Mean targeted region-of-interest (ROI) values extracted from structural MRI (voxel-based morphometry (VBM) and FreeSurfer V5) and PET (FDG and Florbetapir) scans were used as features. Our results show that the graph-based SSL classifiers outperformed support vector machines for this task and the best performance was obtained with 66.8% cross-validated AUC (area under the ROC curve) when FDG and FreeSurfer datasets were integrated. Valid imaging-based phenotypes selected from our approach included ROI values extracted from temporal lobe, hippocampus, and amygdala. Employing a graph-based SSL approach with multimodal brain imaging data appears to have substantial potential for detecting E-MCI for early detection of prodromal AD warranting further investigation.Item Knowledge-driven binning approach for rare variant association analysis: application to neuroimaging biomarkers in Alzheimer's disease(BioMed Central, 2017-05) Kim, Dokyoon; Basile, Anna O.; Bang, Lisa; Horgusluoglu, Emrin; Lee, Seunggeun; Ritchie, Marylyn D.; Saykin, Andrew J.; Nho, Kwangsik; Medicine, School of MedicineBACKGROUND: Rapid advancement of next generation sequencing technologies such as whole genome sequencing (WGS) has facilitated the search for genetic factors that influence disease risk in the field of human genetics. To identify rare variants associated with human diseases or traits, an efficient genome-wide binning approach is needed. In this study we developed a novel biological knowledge-based binning approach for rare-variant association analysis and then applied the approach to structural neuroimaging endophenotypes related to late-onset Alzheimer's disease (LOAD). METHODS: For rare-variant analysis, we used the knowledge-driven binning approach implemented in Bin-KAT, an automated tool, that provides 1) binning/collapsing methods for multi-level variant aggregation with a flexible, biologically informed binning strategy and 2) an option of performing unified collapsing and statistical rare variant analyses in one tool. A total of 750 non-Hispanic Caucasian participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort who had both WGS data and magnetic resonance imaging (MRI) scans were used in this study. Mean bilateral cortical thickness of the entorhinal cortex extracted from MRI scans was used as an AD-related neuroimaging endophenotype. SKAT was used for a genome-wide gene- and region-based association analysis of rare variants (MAF (minor allele frequency) < 0.05) and potential confounding factors (age, gender, years of education, intracranial volume (ICV) and MRI field strength) for entorhinal cortex thickness were used as covariates. Significant associations were determined using FDR adjustment for multiple comparisons. RESULTS: Our knowledge-driven binning approach identified 16 functional exonic rare variants in FANCC significantly associated with entorhinal cortex thickness (FDR-corrected p-value < 0.05). In addition, the approach identified 7 evolutionary conserved regions, which were mapped to FAF1, RFX7, LYPLAL1 and GOLGA3, significantly associated with entorhinal cortex thickness (FDR-corrected p-value < 0.05). In further analysis, the functional exonic rare variants in FANCC were also significantly associated with hippocampal volume and cerebrospinal fluid (CSF) Aβ1-42 (p-value < 0.05). CONCLUSIONS: Our novel binning approach identified rare variants in FANCC as well as 7 evolutionary conserved regions significantly associated with a LOAD-related neuroimaging endophenotype. FANCC (fanconi anemia complementation group C) has been shown to modulate TLR and p38 MAPK-dependent expression of IL-1β in macrophages. Our results warrant further investigation in a larger independent cohort and demonstrate that the biological knowledge-driven binning approach is a powerful strategy to identify rare variants associated with AD and other complex disease.Item Research Directions in the Clinical Implementation of Pharmacogenomics: An Overview of US Programs and Projects(Wiley, 2018-05) Volpi, Simona; Bult, Carol J.; Chisholm, Rex L.; Deverka, Patricia A.; Ginsburg, Geoffrey S.; Jacob, Howard J.; Kasapi, Melpomeni; McLeod, Howard L.; Roden, Dan M.; Williams, Marc S.; Green, Eric D.; Rodriguez, Laura Lyman; Aronson, Samuel; Cavallari, Larisa H.; Denny, Joshua C.; Dressler, Lynn G.; Johnson, Julie A.; Klein, Teri E.; Leeder, J. Steven; Piquette-Miller, Micheline; Perera, Minoli; Rasmussen-Torvik, Laura J.; Rehm, Heidi L.; Ritchie, Marylyn D.; Skaar, Todd C.; Wagle, Nikhil; Weinshilboum, Richard; Weitzel, Kristin W.; Wildin, Robert; Wilson, John; Manolio, Teri A.; Relling, Mary V.; Pharmacology and Toxicology, School of MedicineResponse to a drug often differs widely among individual patients. This variability is frequently observed not only with respect to effective responses but also with adverse drug reactions. Matching patients to the drugs that are most likely to be effective and least likely to cause harm is the goal of effective therapeutics. Pharmacogenomics (PGx) holds the promise of precision medicine through elucidating the genetic determinants responsible for pharmacological outcomes and using them to guide drug selection and dosing. Here we survey the US landscape of research programs in PGx implementation, review current advances and clinical applications of PGx, summarize the obstacles that have hindered PGx implementation, and identify the critical knowledge gaps and possible studies needed to help to address them.