- Browse by Author
Browsing by Author "Richardson, Sarah J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Altered β-Cell Prohormone Processing and Secretion in Type 1 Diabetes(American Diabetes Association, 2021) Rodriguez-Calvo, Teresa; Chen, Yi-Chun; Verchere, C. Bruce; Haataja, Leena; Arvan, Peter; Leete, Pia; Richardson, Sarah J.; Morgan, Noel G.; Qian, Wei-Jun; Pugliese, Alberto; Atkinson, Mark; Evans-Molina, Carmella; Sims, Emily K.; Pediatrics, School of MedicineAnalysis of data from clinical cohorts, and more recently from human pancreatic tissue, indicates that reduced prohormone processing is an early and persistent finding in type 1 diabetes. In this article, we review the current state of knowledge regarding alterations in islet prohormone expression and processing in type 1 diabetes and consider the clinical impact of these findings. Lingering questions, including pathologic etiologies and consequences of altered prohormone expression and secretion in type 1 diabetes, and the natural history of circulating prohormone production in health and disease, are considered. Finally, key next steps required to move forward in this area are outlined, including longitudinal testing of relevant clinical populations, studies that probe the genetics of altered prohormone processing, the need for combined functional and histologic testing of human pancreatic tissues, continued interrogation of the intersection between prohormone processing and autoimmunity, and optimal approaches for analysis. Successful resolution of these questions may offer the potential to use altered prohormone processing as a biomarker to inform therapeutic strategies aimed at personalized intervention during the natural history of type 1 diabetes and as a pathogenic anchor for identification of potential disease-specific endotypes.Item The Effect of Age on the Progression and Severity of Type 1 Diabetes: Potential Effects on Disease Mechanisms(Springer, 2018-11) Leete, Pia; Mallone, Roberto; Richardson, Sarah J.; Sosenko, Jay M.; Redondo, Maria J.; Evans-Molina, Carmella; Medicine, School of MedicinePurpose of Review To explore the impact of age on type 1 diabetes (T1D) pathogenesis. Recent Findings Children progress more rapidly from autoantibody positivity to T1D and have lower C-peptide levels compared to adults. In histological analysis of post-mortem pancreata, younger age of diagnosis is associated with reduced numbers of insulin containing islets and a hyper-immune CD20hi infiltrate. Moreover compared to adults, children exhibit decreased immune regulatory function and increased engagement and trafficking of autoreactive CD8+ T cells, and age-related differences in β cell vulnerability may also contribute to the more aggressive immune phenotype observed in children. To account for some of these differences, HLA and non-HLA genetic loci that influence multiple disease characteristics, including age of onset, are being increasingly characterized. Summary The exception of T1D as an autoimmune disease more prevalent in children than adults results from a combination of immune, metabolic, and genetic factors. Age-related differences in T1D pathology have important implications for better tailoring of immunotherapies.