- Browse by Author
Browsing by Author "Rhodes, Simon J."
Now showing 1 - 10 of 17
Results Per Page
Sort Options
Item An Animal Model of Combined Pituitary Hormone Deficiency Disease(2010-08) Colvin, Stephanie C.; Konieczny, Stephen F.; Rhodes, Simon J.; Walvoord, Emily C.; Belecky-Adams, Teri; Herring, B. Paul; Roper, RandallLHX3 is a LIM-homeodomain transcription factor that has essential roles in pituitary and nervous system development in mammals. Children who are homozygous for recessive mutations in the LHX3 gene present with combined pituitary hormone deficiency disease (CPHD) characterized by deficits of multiple anterior pituitary hormones. Most LHX3 patients also present with additional defects associated with the nervous system including a characteristic limited head rotation and sometimes deafness. However, of the 10 types of LHX3 mutation described to date, one mutation type (W224ter) does not result in the limited head rotation, defining a new form of the disease. W224ter patients have CPHD but do not have nervous system symptoms. Whereas other mutations in LHX3 cause loss of the entire protein or its activity, the W224ter mutation causes specific loss of the carboxyl terminal of the LHX3 protein—a region that we have shown to contain critical regulatory domains for pituitary gene activation. To better understand the molecular and cellular etiology of CPHD associated with LHX3 gene mutations, I have generated knock-in mice that model the human LHX3 W224ter disease. The resulting mice display marked dwarfism, thyroid disease, female infertility, and reduced male fertility. Immunohistochemistry, real-time quantitative polymerase chain reaction (PCR), and enzyme-linked immunosorbant assays (ELISA) were used to measure hormones and regulatory factor protein and RNA levels, an approach which is not feasible with human patients. We have generated a novel mouse model of human pediatric CPHD. Our findings are consistent with the hypothesis that the actions of the LHX3 factor are molecularly separable in the nervous system and pituitary gland.Item Cell-specific actions of a human LHX3 gene enhancer during pituitary and spinal cord development(The Endocrine Society, 2013-12) Park, Soyoung; Mullen, Rachel D.; Rhodes, Simon J.; Department of Biology, School of ScienceThe LIM class of homeodomain protein 3 (LHX3) transcription factor is essential for pituitary gland and nervous system development in mammals. In humans, mutations in the LHX3 gene underlie complex pediatric syndromes featuring deficits in anterior pituitary hormones and defects in the nervous system. The mechanisms that control temporal and spatial expression of the LHX3 gene are poorly understood. The proximal promoters of the human LHX3 gene are insufficient to guide expression in vivo and downstream elements including a conserved enhancer region appear to play a role in tissue-specific expression in the pituitary and nervous system. Here we characterized the activity of this downstream enhancer region in regulating gene expression at the cellular level during development. Human LHX3 enhancer-driven Cre reporter transgenic mice were generated to facilitate studies of enhancer actions. The downstream LHX3 enhancer primarily guides gene transcription in α-glycoprotein subunit -expressing cells secreting the TSHβ, LHβ, or FSHβ hormones and expressing the GATA2 and steroidogenic factor 1 transcription factors. In the developing nervous system, the enhancer serves as a targeting module active in V2a interneurons. These results demonstrate that the downstream LHX3 enhancer is important in specific endocrine and neural cell types but also indicate that additional regulatory elements are likely involved in LHX3 gene expression. Furthermore, these studies revealed significant gonadotrope cell heterogeneity during pituitary development, providing insights into the cellular physiology of this key reproductive regulatory cell. The human LHX3 enhancer-driven Cre reporter transgenic mice also provide a valuable tool for further developmental studies of cell determination and differentiation in the pituitary and nervous system.Item Dean, Chairs, and Faculty: A Team Approach for Enhancing Faculty Diversity(Wiley, 2017) Rhodes, Simon J.; Lees, N. Douglas; Biology, School of ScienceItem Death-Associated Protein Kinase Regulates Vascular Smooth Muscle Cell Signaling and Migration(2011-03-16) Blue, Emily Keller; Gallagher, Patricia J.; Elmendorf, Jeffrey S.; Herring, B. Paul; Rhodes, Simon J.; Thurmond, Debbie C.Cardiovascular disease is the number one cause of death for Americans. New treatments are needed for serious conditions like atherosclerosis, as it can lead to stroke and heart attack. Many types of cells contribute to the progression of cardiovascular disease, including smooth muscle cells that comprise the middle layers of arteries. Inappropriate growth and migration of smooth muscle cells into the lumen of arteries has been implicated in vascular diseases. Death associated protein kinase (DAPK) is a protein that has been found to regulate the survival and migration of cancer cells, but has not been well characterized in vascular cells. The objective of this work was to determine the signaling pathways that DAPK regulates in smooth muscle cells. These studies have focused on smooth muscle cells isolated from human coronary arteries (HCASM cells). We have determined that HCASM cells depleted of DAPK exhibit more rapid migration, showing that DAPK negatively regulates migration of vascular cells. Results from a focused RT-PCR array identified matrix metalloproteinase 9 (MMP9) as a gene that is increased in cells depleted of DAPK. MMP9 is an important enzyme that degrades collagen, a component of the extracellular matrix through which smooth muscle cells migrate during atherosclerosis. We found that DAPK regulates phosphorylation of the NF-kappa B transcription factor p65 at serine 536, a modification previously found to correlate with increased nuclear levels and activity of p65. In DAPK-depleted HCASM cells, there was more phosphorylation of p65, which causes increased MMP9 promoter activity. Additional experiments were conducted using transgenic mice in which the DAPK gene has been deleted. By studying these mice, we have determined that under some circumstances DAPK augments maximal MMP9 levels in mouse carotid arteries which have been injured by ligation surgery via other signaling pathways. MMP9 has been previously implicated as a protein that promotes vascular diseases such as atherosclerosis. Our research in identifying DAPK as a regulator of MMP9 expression identifies a new target for treatment of vascular diseases like atherosclerosis.Item Differentiation and contractility of colon smooth muscle under normal and diabetic conditions(2013-10-07) Touw, Ketrija; Herring, B. Paul; Gallagher, Patricia J.; Rhodes, Simon J.; Considine, Robert V.Intestinal smooth muscle development involves complex transcriptional regulation leading to cell differentiation of the circular, longitudinal and muscularis mucosae layers. Differentiated intestinal smooth muscle cells express high levels of smooth muscle-specific contractile and regulatory proteins, including telokin. Telokin is regulatory protein that is highly expressed in visceral smooth muscle. Analysis of cis-elements required for transcriptional regulation of the telokin promoter by using hypoxanthine-guanine phosphoribosyltransferase (Hprt)-targeted reporter transgenes revealed that a 10 base pair large CC(AT)₆GG ciselement, called CArG box is required for promoter activity in all tissues. We also determined that an additional 100 base pair region is necessary for transgene activity in intestinal smooth muscle cells. To examine how transcriptional regulation of intestinal smooth muscle may be altered under pathological conditions we examined the effects of diabetes on colonic smooth muscle. Approximately 76% of diabetic patients develop gastrointestinal (GI) symptoms such as constipation due to intestinal dysmotility. Mice were treated with low-dose streptozotocin to induce a type 1 diabetes-like hyperglycemia. CT scans revealed decreased overall GI tract motility after 7 weeks of hyperglycemia. Acute (1 week) and chronic (7 weeks) diabetic mice also had decreased potassium chloride (KCl)-induced colon smooth muscle contractility. We hypothesized that decreased smooth muscle contractility at least in part, was due to alteration of contractile protein gene expression. However, diabetic mice showed no changes in mRNA or protein levels of smooth muscle contractile proteins. We determined that the decreased colonic contractility was associated with an attenuated intracellular calcium increase, as measured by ratio-metric imaging of Fura-2 fluorescence in isolated colonic smooth muscle strips. This attenuated calcium increase resulted in decreased myosin light chain phosphorylation, thus explaining the decreased contractility of the colon. Chronic diabetes was also associated with increased basal calcium levels. Western blotting and quantitative real time polymerase chain reaction (qRT-PCR) analysis revealed significant changes in calcium handling proteins in chronic diabetes that were not seen in the acute state.These changes most likely reflect compensatory mechanisms activated by the initial impaired calcium response. Overall my results suggest that type 1 diabetes in mice leads to decreased colon motility in part due to altered calcium handling without altering contractile protein expression.Item Identification of a Minimal Cis-element and Cognate Trans-factors Required for the Regulation of Rac2 Gene Expression during K562 Cell Differentiation(2009-03-18T18:48:49Z) Muthukrishnan, Rajarajeswari; Skalnik, David; Herring, B. Paul; Rhodes, Simon J.; Wek, Ronald C.This dissertation examines the molecular mechanisms regulating Rac2 gene expression during cell differentiation and identification of a minimal cis-element required for the induction of Rac2 gene expression during K562 cell differentiation. The Rho family GTPase Rac2 is expressed in hematopoietic cell lineages and is further up-regulated upon terminal myeloid cell differentiation. Rac2 plays an important role in many hematopoietic cellular functions, such as neutrophil chemotaxis, superoxide production, cytoskeletal reorganization, and stem cell adhesion. Despite the crucial role of Rac2 in blood cell function, little is known about the mechanisms of Rac2 gene regulation during blood cell differentiation. Previous studies from the Skalnik lab determined that a human Rac2 gene fragment containing the 1.6 kb upstream and 8 kb downstream sequence directs lineage-specific expression of Rac2 in transgenic mice. In addition, epigenetic modifications such as DNA methylation also play important roles in the lineage-specific expression of Rac2. The current study investigated the molecular mechanisms regulating human Rac2 gene expression during cell differentiation using chemically induced megakaryocytic differentiation of the human chronic myelogenous leukemia cell line K562 as the model system. Phorbol 12-myristate 13-acetate (PMA) stimulation of K562 cells resulted in increased Rac2 mRNA expression as analyzed by real time-polymerase chain reaction (RT-PCR). Luciferase reporter gene assays revealed that increased transcriptional activity of the Rac2 gene is mediated by the Rac2 promoter region. Nested 5’- deletions of the promoter region identified a critical regulatory region between -4223 bp and -4008 bp upstream of the transcription start site. Super shift and chromatin immunoprecipitation assays indicated binding by the transcription factor AP1 to three distinct binding sites within the 135 bp minimal regulatory region. PMA stimulation of K562 cells led to extensive changes in chromatin structure, including increased histone H3 acetylation, within the 135 bp Rac2 cis-element. These findings provide evidence for the interplay between epigenetic modifications, transcription factors and cis-acting regulatory elements within the Rac2 gene promoter region to regulate Rac2 expression during K562 cell differentiation.Item Identification of putative targets of Nkx2-5 in Xenopus laevis using cross-species annotation and microarray gene expression analysis(2011-10) Breese, Marcus R.; Edenberg, Howard J.; Hurley, Thomas D., 1961-; Rhodes, Simon J.; Skalnik, David GordonThe heart is the first organ to form during development in vertebrates and Nkx2-5 is the first marker of cardiac specification. In Xenopus laevis, Nkx2-5 is essential for heart formation, but early targets of this homeodomain transcription factor have not been fully characterized. In order to discover potential early targets of Nkx2-5, synthetic Nkx2-5 mRNA was injected into eight-cell Xenopus laevis embryos and changes in gene expression measured using microarray analysis. While Xenopus laevis is a commonly used model organism for developmental studies, its genome remains poorly annotated. To compensate for this, a cross-species annotation database called CrossGene was constructed. CrossGene was created by exhaustively comparing UniGene transcripts from Homo sapiens, Mus musculus, Rattus norvegicus, Gallus gallus, Xenopus laevis, Danio rerio, Drosophila melanogaster, and Caenorhabditis elegans using the BLAST family of algorithms. Networks were then assembled by recursively combining reciprocal best matches into groups of orthologous genes. Gene ontology annotation from all organisms could then be applied to all members of the reciprocal group. In this way, the CrossGene database was used to augment the existing genomic annotation of Xenopus laevis. Combining cross-species annotation with differential gene expression analysis of Nkx2-5 overexpression led to the discovery of 99 potential targets of Nkx2-5.Item In vivo analysis of human LHX3 enhancer regulation(2013-03) Park, Soyoung; Rhodes, Simon J.; Day, Richard N.; Harrington, Maureen A.; Herring, B. Paul; Skalnik, David GordonThe LHX3 transcription factor is essential for pituitary gland and nervous system development in mammals. In humans, mutations in the LHX3 gene underlie combined pituitary hormone deficiency (CPHD) disease featuring deficits in anterior pituitary hormones and defects in the nervous system. The mechanisms that control temporal and spatial expression of the LHX3 gene are poorly understood. The proximal promoters of the human LHX3 gene are insufficient to guide expression in vivo and downstream elements including a conserved 7.9 kilobase (kb) enhancer region appear to play a role in tissue-specific expression in the pituitary and nervous system. In this study, I characterized the activity of this downstream enhancer region in regulating gene expression at the cellular level during development. Human LHX3 enhancer-driven Cre reporter transgenic mice were generated to facilitate studies of enhancer actions. The downstream LHX3 enhancer primarily guides gene transcription in αGSU-expressing cells secreting the TSHβ, LHβ or FSHβ hormones and expressing the GATA2 and SF1 transcription factors. In the developing nervous system, the enhancer serves as a targeting module for expression specifically in V2a interneurons. These results demonstrate that the downstream LHX3 enhancer is important in specific endocrine and neural cell types but also indicate that additional regulatory elements are likely involved in LHX3 gene expression in other cell types. Further, these studies demonstrate significant gonadotrope cell heterogeneity during pituitary development, providing insights into the cellular physiology of this key reproductive regulatory cell. The human LHX3 enhancer-driven Cre reporter transgenic mice provide a valuable tool for further developmental studies of cell determination and differentiation in the pituitary and nervous system. Furthermore understanding the regulation of human LHX3 gene will help develop tools to better diagnose and treat pituitary CPHD disease.Item In Vivo Analysis of Human LHX3 Gene Regulation(2011-02) Mullen, Rachel D.; Rhodes, Simon J.; Herring, B. Paul; Skalnik, David Gordon; Thurmond, Debbie C.; Walvoord, Emily C.LHX3 is a transcription factor important in pituitary and nervous system development. Patients with mutations in coding regions of the gene have combined pituitary hormone deficiency (CPHD) that causes growth, fertility, and metabolic problems. Promoter and intronic elements of LHX3 important for basal gene expression in vitro have been identified, but the key regulatory elements necessary for in vivo expression were unknown. With these studies, I sought to elucidate how LHX3 gene expression is regulated in vivo. Based on sequence conservation between species in non-coding regions, I identified a 7.9 kilobase (kb) region 3' of the human LHX3 gene as a potential regulatory element. In a beta galactosidase transgenic mouse model, this region directed spatial and temporal expression to the developing pituitary gland and spinal cord in a pattern consistent with endogenous LHX3 expression. Using a systematic series of deletions, I found that the conserved region contains multiple nervous system enhancers and a minimal 180 base pair (bp) enhancer that direct expression to both the pituitary and spinal cord in transgenic mice. Within this minimal enhancer, TAAT/ATTA sequences that are characteristic of homeodomain protein binding sites are required to direct expression. I performed DNA binding experiments and chromatin immunoprecipitation assays to reveal that the ISL1 and PITX1 proteins specifically recognize these elements in vitro and in vivo. Based on in vivo mutational analyses, two tandem ISL1 binding sites are required for enhancer activity in the pituitary and spine and a PITX1 binding site is required for spatial patterning of gene expression in the pituitary. Additional experiments demonstrated that these three elements cannot alone direct gene expression, suggesting a combination of factors is required for enhancer activity. This study reveals that the key regulatory elements guiding developmental regulation of the human LHX3 gene lie in this conserved downstream region. Further, this work implicates ISL1 as a new transcriptional regulator of LHX3 and describes a possible mechanism for the regulation of LHX3 by a known upstream factor, PITX1. Identification of important regulatory regions will also enable genetic screening in candidate CPHD patients and will thereby facilitate patient treatment and genetic counseling.Item Protein phosphatase 2A (PP2A) holoenzymes regulate death associated protein kinase (DAPK) in ceramide-induced anoikis(2010-05-03T19:42:36Z) Widau, Ryan Cole; Gallagher, Patricia J.; Herring, B. Paul; Rhodes, Simon J.; Skalnik, David GordonModulation of sphingolipid-induced apoptosis is a potential mechanism to enhance the effectiveness of chemotherapeutic drugs. Ceramide is a pleiotropic, sphingolipid produced by cells in response to inflammatory cytokines, chemotherapeutic drugs and ionizing radiation. Ceramide is a potent activator of protein phosphatases, including protein phosphatase 2A (PP2A) leading to dephosphorylation of substrates important in regulating mitochondrial dysfunction and apoptosis. Previous studies demonstrated that death associated protein kinase (DAPK) plays a role in ceramide-induced apoptosis via an unknown mechanism. The tumor suppressor DAPK is a calcium/calmodulin regulated serine/threonine kinase with an important role in regulating cytoskeletal dynamics. Auto-phosphorylation within the calmodulin-binding domain at serine308 inhibits DAPK catalytic activity. Dephosphorylation of serine308 by a hitherto unknown phosphatase enhances kinase activity and proteasomal mediated degradation of DAPK. In these studies, using a tandem affinity purification procedure coupled to LC-MS/MS, we have identified two holoenzyme forms of PP2A as DAPK interacting proteins. These phosphatase holoenzymes dephosphorylate DAPK at Serine308 in vitro and in vivo resulting in enhanced kinase activity of DAPK. The enzymatic activity of PP2A also negatively regulates DAPK protein levels by enhancing proteasomal-mediated degradation of the kinase, as a means to attenuate prolonged kinase activation. These studies also demonstrate that ceramide causes a caspase-independent cell detachment in HeLa cells, a human cervical carcinoma cell line. Subsequent to detachment, these cells underwent caspase-dependent apoptosis due to lack of adhesion, termed anoikis. Overexpression of wild type DAPK induced cell rounding and detachment similar to cells treated with ceramide; however, this effect was not observed following expression of a phosphorylation mutant, S308E DAPK. Finally, the endogenous interaction of DAPK and PP2A was determined to be required for ceramide-induced cell detachment and anoikis. Together these studies have provided exciting and essential new data regarding the mechanisms of cell adhesion and anoikis. These results define a novel cellular pathway initiated by ceramide-mediated activation of PP2A and DAPK to regulate inside-out signaling and promote anoikis.