- Browse by Author
Browsing by Author "Requesens, Deborah"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Characterization of Reference Materials for Spinal Muscular Atrophy Genetic Testing: A Genetic Testing Reference Materials Coordination Program Collaborative Project(Elsevier, 2021) Prior, Thomas W.; Bayrak-Toydemir, Pinar; Lynnes, Ty C.; Mao, Rong; Metcalf, James D.; Muralidharan, Kasinathan; Iwata-Otsubo, Aiko; Pham, Ha T.; Pratt, Victoria M.; Qureshi, Shumaila; Requesens, Deborah; Shen, Junqing; Vetrini, Francesco; Kalman, Lisa; Medicine, School of MedicineSpinal muscular atrophy (SMA) is an autosomal recessive disorder predominately caused by bi-allelic loss of the SMN1 gene. Increased copies of SMN2, a low functioning nearly identical paralog, are associated with a less severe phenotype. SMA was recently recommended for inclusion in newborn screening. Clinical laboratories must accurately measure SMN1 and SMN2 copy number to identify SMA patients and carriers, and to identify individuals likely to benefit from therapeutic interventions. Having publicly available and appropriately characterized reference materials with various combinations of SMN1 and SMN2 copy number variants is critical to assure accurate SMA clinical testing. To address this need, the CDC-based Genetic Testing Reference Materials Coordination Program, in collaboration with members of the genetic testing community and the Coriell Institute for Medical Research, has characterized 15 SMA reference materials derived from publicly available cell lines. DNA samples were distributed to four volunteer testing laboratories for genotyping using three different methods. The characterized samples had zero to four copies of SMN1 and zero to five copies SMN2. The samples also contained clinically important allele combinations (eg, zero copies SMN1, three copies SMN2), and several had markers indicative of an SMA carrier. These and other reference materials characterized by the Genetic Testing Reference Materials Coordination Program are available from the Coriell Institute and are proposed to support the quality of clinical laboratory testing.Item Characterization of Reference Materials with an Association for Molecular Pathology Pharmacogenetics Working Group Tier 2 Status: CYP2C9, CYP2C19, VKORC1, CYP2C Cluster Variant, and GGCX: A GeT-RM Collaborative Project(Elsevier, 2021) Pratt, Victoria M.; Turner, Amy; Broeckel, Ulrich; Dawson, D. Brian; Gaedigk, Andrea; Lynnes, Ty C.; Medeiros, Elizabeth B.; Moyer, Ann M.; Requesens, Deborah; Vetrini, Francesco; Kalman, Lisa V.; Medical and Molecular Genetics, School of MedicinePharmacogenetic testing is increasingly available from clinical and research laboratories. However, only a limited number of quality control and other reference materials are currently available for many of the variants that are tested. The Association for Molecular Pathology Pharmacogenetic Work Group has published a series of papers recommending alleles for inclusion in clinical testing. Several of the alleles were not considered for tier 1 because of a lack of reference materials. To address this need, the Division of Laboratory Systems, Centers for Disease Control and Prevention-based Genetic Testing Reference Material (GeT-RM) program, in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Institute for Medical Research, has characterized 18 DNA samples derived from Coriell cell lines. DNA samples were distributed to five volunteer testing laboratories for genotyping using three commercially available and laboratory developed tests. Several tier 2 variants, including CYP2C9∗13, CYP2C19∗35, the CYP2C cluster variant (rs12777823), two variants in VKORC1 (rs61742245 and rs72547529) related to warfarin resistance, and two variants in GGCX (rs12714145 and rs11676382) related to clotting factor activation, were identified among these samples. These publicly available materials complement the pharmacogenetic reference materials previously characterized by the GeT-RM program and will support the quality assurance and quality control programs of clinical laboratories that perform pharmacogenetic testing.