- Browse by Author
Browsing by Author "Ren, Chunying"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item A Comparative Assessment of Geostatistical, Machine Learning, and Hybrid Approaches for Mapping Topsoil Organic Carbon Content(MDPI, 2019-04) Chen, Lin; Ren, Chunying; Li, Lin; Wang, Yeqiao; Zhang, Bai; Wang, Zongming; Li, Linfeng; Earth Sciences, School of ScienceAccurate digital soil mapping (DSM) of soil organic carbon (SOC) is still a challenging subject because of its spatial variability and dependency. This study is aimed at comparing six typical methods in three types of DSM techniques for SOC mapping in an area surrounding Changchun in Northeast China. The methods include ordinary kriging (OK) and geographically weighted regression (GWR) from geostatistics, support vector machines for regression (SVR) and artificial neural networks (ANN) from machine learning, and geographically weighted regression kriging (GWRK) and artificial neural networks kriging (ANNK) from hybrid approaches. The hybrid approaches, in particular, integrated the GWR from geostatistics and ANN from machine learning with the estimation of residuals by ordinary kriging, respectively. Environmental variables, including soil properties, climatic, topographic, and remote sensing data, were used for modeling. The mapping results of SOC content from different models were validated by independent testing data based on values of the mean error, root mean squared error and coefficient of determination. The prediction maps depicted spatial variation and patterns of SOC content of the study area. The results showed the accuracy ranking of the compared methods in decreasing order was ANNK, SVR, ANN, GWRK, OK, and GWR. Two-step hybrid approaches performed better than the corresponding individual models, and non-linear models performed better than the linear models. When considering the uncertainty and efficiency, ML and two-step approach are more suitable than geostatistics in regional landscapes with the high heterogeneity. The study concludes that ANNK is a promising approach for mapping SOC content at a local scale.Item Coupling Coordination Relationship between Urban Sprawl and Urbanization Quality in the West Taiwan Strait Urban Agglomeration, China: Observation and Analysis from DMSP/OLS Nighttime Light Imagery and Panel Data(MDPI, 2020-10) Lu, Chunyan; Li, Lin; Lei, Yifan; Ren, Chunying; Su, Ying; Huang, Yufei; Chen, Yu; Lei, Shaohua; Fu, Weiwei; Earth Sciences, School of ScienceUrban sprawl is the most prominent characteristic of urbanization, and increasingly affects local and regional sustainable development. The observation and analysis of urban sprawl dynamics and their relationship with urbanization quality are essential for framing integrative urban planning. In this study, the urban areas of the West Taiwan Strait Urban Agglomeration (WTSUA) were extracted using nighttime light imagery from 1992 to 2013. The spatio-temporal characteristics and pattern of urban sprawl were quantitatively analyzed by combining an urban expansion rate index and a standard deviation ellipse model. The urbanization quality was assessed using an entropy weight model, and its relationship with urban sprawl was calculated by a coupling coordination degree model. The results showed that the urban area in the WTSUA experienced a significant increase, i.e., 18,806.73 km2, during the period 1992–2013. The central cities grew by 11.08% and noncentral cities by 27.43%, with a general uneven city rank-size distribution. The urban sprawl showed a circular expansion pattern, accompanied by a gradual centroid migration of urban areas from the southeast coast to the central-western regions. The coupling coordination level between urban expansion and urbanization quality increased from serious incoordination in 1992 to basic coordination in 2013. Dual driving forces involving state-led policies and market-oriented land reform had a positive influence on the harmonious development of urban sprawl and urbanization quality of the WTSUA. This research offers an effective approach to monitor changes in urban sprawl and explore the coupling coordination relationship between urban sprawl and urbanization quality. The study provides important scientific references for the formulation of future policies and planning for sustainable development in urban agglomerations.Item Mapping Forest Cover in Northeast China from Chinese HJ-1 Satellite Data Using an Object-Based Algorithm(MDPI, 2018-12-16) Ren, Chunying; Zhang, Bai; Wang, Zongming; Li, Lin; Jia, Mingming; Earth Sciences, School of ScienceForest plays a significant role in the global carbon budget and ecological processes. The precise mapping of forest cover can help significantly reduce uncertainties in the estimation of terrestrial carbon balance. A reliable and operational method is necessary for a rapid regional forest mapping. In this study, the goal relies on mapping forest and subcategories in Northeast China through the use of high spatio-temporal resolution HJ-1 imagery and time series vegetation indices within the context of an object-based image analysis and decision tree classification. Multi-temporal HJ-1 images obtained in a single year provide an opportunity to acquire phenology information. By analyzing the difference of spectral and phenology information between forest and non-forest, forest subcategories, decision trees using threshold values were finally proposed. The resultant forest map has a high overall accuracy of 0.91 ± 0.01 with a 95% confidence interval, based on the validation using ground truth data from field surveys. The forest map extracted from HJ-1 imagery was compared with two existing global land cover datasets: GlobCover 2009 and MCD12Q1 2009. The HJ-1-based forest area is larger than that of MCD12Q1 and GlobCover and more closely resembles the national statistics data on forest area, which accounts for more than 40% of the total area of the Northeast China. The spatial disagreement primarily occurs in the northern part of the Daxing'an Mountains, Sanjiang Plain and the southwestern part of the Songliao Plain. The compared result also indicated that the forest subcategories information from global land cover products may introduce large uncertainties for ecological modeling and these should be cautiously used in various ecological models. Given the higher spatial and temporal resolution, HJ-1-based forest products could be very useful as input to biogeochemical models (particularly carbon cycle models) that require accurate and updated estimates of forest area and type.Item Rapid Invasion of Spartina alterniflora in the Coastal Zone of Mainland China: New Observations from Landsat OLI Images(MDPI, 2018-12) Liu, Mingyue; Mao, Dehua; Wang, Zongming; Li, Lin; Man, Weidong; Jia, Mingming; Ren, Chunying; Zhang, Yuanzhi; Earth Sciences, School of SciencePlant invasion imposes significant threats to biodiversity and ecosystem function. Thus, monitoring the spatial pattern of invasive plants is vital for effective ecosystem management. Spartina alterniflora (S. alterniflora) has been one of the most prevalent invasive plants along the China coast, and its spread has had severe ecological consequences. Here, we provide new observation from Landsat operational land imager (OLI) images. Specifically, 43 Landsat-8 OLI images from 2014 to 2016, a combination of object-based image analysis (OBIA) and support vector machine (SVM) methods, and field surveys covering the whole coast were used to construct an up-to-date dataset for 2015 and investigate the spatial variability of S. alterniflora in the coastal zone of mainland China. The classification results achieved good estimation, with a kappa coefficient of 0.86 and 96% overall accuracy. Our results revealed that there was approximately 545.80 km2 of S. alterniflora distributed in the coastal zone of mainland China in 2015, from Hebei to Guangxi provinces. Nearly 92% of the total area of S. alterniflora was distributed within four provinces: Jiangsu, Shanghai, Zhejiang, and Fujian. Seven national nature reserves invaded by S. alterniflora encompassed approximately one-third (174.35 km2) of the total area of S. alterniflora over mainland China. The Yancheng National Nature Reserve exhibited the largest area of S. alterniflora (115.62 km2) among the reserves. Given the rapid and extensive expansion of S. alterniflora in the 40 years since its introduction and its various ecological effects, geospatially varied responding decisions are needed to promote sustainable coastal ecosystems.Item Spatial Expansion and Soil Organic Carbon Storage Changes of Croplands in the Sanjiang Plain, China(MDPI, 2017-04) Man, Weidong; Yu, Hao; Li, Lin; Liu, Mingyue; Mao, Dehua; Ren, Chunying; Wang, Zongming; Jia, Mingming; Miao, Zhenghong; Lu, Chunyan; Li, Huiying; Earth Sciences, School of ScienceSoil is the largest pool of terrestrial organic carbon in the biosphere and interacts strongly with the atmosphere, climate and land cover. Remote sensing (RS) and geographic information systems (GIS) were used to study the spatio-temporal dynamics of croplands and soil organic carbon density (SOCD) in the Sanjiang Plain, to estimate soil organic carbon (SOC) storage. Results show that croplands increased with 10,600.68 km2 from 1992 to 2012 in the Sanjiang Plain. Area of 13,959.43 km2 of dry farmlands were converted into paddy fields. Cropland SOC storage is estimated to be 1.29 ± 0.27 Pg C (1 Pg = 103 Tg = 1015 g) in 2012. Although the mean value of SOCD for croplands decreased from 1992 to 2012, the SOC storage of croplands in the top 1 m in the Sanjiang Plain increased by 70 Tg C (1220 to 1290). This is attributed to the area increases of cropland. The SOCD of paddy fields was higher and decreased more slowly than that of dry farmlands from 1992 to 2012. Conversion between dry farmlands and paddy fields and the agricultural reclamation from natural land-use types significantly affect the spatio-temporal patterns of cropland SOCD in the Sanjiang Plain. Regions with higher and lower SOCD values move northeast and westward, respectively, which is almost consistent with the movement direction of centroids for paddy fields and dry farmlands in the study area. Therefore, these results were verified. SOC storages in dry farmlands decreased by 17.5 Tg·year−1 from 1992 to 2012, whilst paddy fields increased by 21.0 Tg·C·year−1.