- Browse by Author
Browsing by Author "Reher, Thomas A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Resting state functional MRI in infants with prenatal opioid exposure-a pilot study(Springer, 2021-04) Radhakrishnan, Rupa; Elsaid, Nahla M. H.; Sadhasivam, Senthilkumar; Reher, Thomas A.; Hines, Abbey C.; Yoder, Karmen K.; Saykin, Andrew J.; Wu, Yu-Chien; Radiology and Imaging Sciences, School of MedicinePURPOSE: Exposure to prenatal opioids may adversely impact the developing brain networks. The aim of this pilot study was to evaluate alterations in amygdalar functional connectivity in human infants with prenatal opioid exposure. METHODS: In this prospective IRB approved study, we performed resting state functional MRI (rs-fMRI) in 10 infants with prenatal opioid exposure and 12 infants without prenatal drug exposure at < 48 weeks corrected gestational age. Following standard preprocessing, we performed seed-based functional connectivity analysis with the right and left amygdala as the regions of interest after correcting for maternal depression and infant sex. We compared functional connectivity of the amygdala network between infants with and without prenatal opioid exposure. RESULTS: There were significant differences in connectivity of the amygdala seed regions to the several cortical regions including the medial prefrontal cortex in infants who had prenatal opioid exposure when compared with opioid naïve infants. CONCLUSION: This finding of increased amygdala functional connectivity in infants with in utero opioid exposure suggests a potential role of maternal opioid exposure on infants' altered amygdala function. This association with prenatal exposure needs to be replicated in future larger studies.Item Small‐Conductance Calcium‐Activated Potassium Current in Normal Rabbit Cardiac Purkinje Cells(Wiley, 2017-05-26) Reher, Thomas A.; Wang, Zhuo; Hsueh, Chia‐Hsiang; Chang, Po‐Cheng; Pan, Zhenwei; Kumar, Mohineesh; Patel, Jheel; Tan, Jian; Shen, Changyu; Chen, Zhenhui; Fishbein, Michael C.; Rubart, Michael; Boyden, Penelope; Chen, Peng‐Sheng; Medicine, School of MedicineBackground Purkinje cells (PCs) are important in cardiac arrhythmogenesis. Whether small‐conductance calcium‐activated potassium (SK) channels are present in PCs remains unclear. We tested the hypotheses that subtype 2 SK (SK2) channel proteins and apamin‐sensitive SK currents are abundantly present in PCs. Methods and Results We studied 25 normal rabbit ventricles, including 13 patch‐clamp studies, 4 for Western blotting, and 8 for immunohistochemical staining. Transmembrane action potentials were recorded in current‐clamp mode using the perforated‐patch technique. For PCs, the apamin (100 nmol/L) significantly prolonged action potential duration measured to 80% repolarization by an average of 10.4 ms (95% CI, 0.11–20.72) (n=9, P=0.047). Voltage‐clamp study showed that apamin‐sensitive SK current density was significantly larger in PCs compared with ventricular myocytes at potentials ≥0 mV. Western blotting of SK2 expression showed that the SK2 protein expression in the midmyocardium was 58% (P=0.028) and the epicardium was 50% (P=0.018) of that in the pseudotendons. Immunostaining of SK2 protein showed that PCs stained stronger than ventricular myocytes. Confocal microscope study showed SK2 protein was distributed to the periphery of the PCs. Conclusions SK2 proteins are more abundantly present in the PCs than in the ventricular myocytes of normal rabbit ventricles. Apamin‐sensitive SK current is important in ventricular repolarization of normal PCs.