- Browse by Author
Browsing by Author "Readhead, Ben"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Correction to: Integrative analysis of loss-of-function variants in clinical and genomic data reveals novel genes associated with cardiovascular traits(BioMed Central, 2019-11-05) Glicksberg, Benjamin S.; Amadori, Letizia; Akers, Nicholas K.; Sukhavasi, Katyayani; Franzén, Oscar; Li, Li; Belbin, Gillian M.; Ayers, Kristin L.; Shameer, Khader; Badgeley, Marcus A.; Johnson, Kipp W.; Readhead, Ben; Darrow, Bruce J.; Kenny, Eimear E.; Betsholtz, Christer; Ermel, Raili; Skogsberg, Josefin; Ruusalepp, Arno; Schadt, Eric E.; Dudley, Joel T.; Ren, Hongxia; Kovacic, Jason C.; Giannarelli, Chiara; Li, Shuyu D.; Björkegren, Johan L. M.; Chen, Rong; Pediatrics, School of MedicineErratum for Integrative analysis of loss-of-function variants in clinical and genomic data reveals novel genes associated with cardiovascular traits. [BMC Med Genomics. 2019]Item Deletion of the glucocorticoid receptor chaperone FKBP51 prevents glucocorticoid-induced skin atrophy(Impact Journals, 2018-10-05) Baida, Gleb; Bhalla, Pankaj; Yemelyanov, Alexander; Stechschulte, Lance A.; Shou, Weinian; Readhead, Ben; Dudley, Joel T.; Sánchez, Edwin R.; Budunova, Irina; Pediatrics, School of MedicineFKBP51 (FK506-binding protein 51) is a known co-chaperone and regulator of the glucocorticoid receptor (GR), which usually attenuates its activity. FKBP51 is one of the major GR target genes in skin, but its role in clinical effects of glucocorticoids is not known. Here, we used FKBP51 knockout (KO) mice to determine FKBP51's role in the major adverse effect of topical glucocorticoids, skin atrophy. Unexpectedly, we found that all skin compartments (epidermis, dermis, dermal adipose and CD34+ stem cells) in FKBP51 KO animals were much more resistant to glucocorticoid-induced hypoplasia. Furthermore, despite the absence of inhibitory FKBP51, the basal level of expression and glucocorticoid activation of GR target genes were not increased in FKBP51 KO skin or CRISPR/Cas9-edited FKBP51 KO HaCaT human keratinocytes. FKBP51 is known to negatively regulate Akt and mTOR. We found a significant increase in AktSer473 and mTORSer2448 phosphorylation and downstream pro-growth signaling in FKBP51-deficient keratinocytes in vivo and in vitro. As Akt/mTOR-GR crosstalk is usually negative in skin, our results suggest that Akt/mTOR activation could be responsible for the lack of increased GR function and resistance of FKBP51 KO mice to the steroid-induced skin atrophy.Item Integrative analysis of loss-of-function variants in clinical and genomic data reveals novel genes associated with cardiovascular traits(Biomed Central, 2019-07-25) Glicksberg, Benjamin S.; Amadori, Letizia; Akers, Nicholas K.; Sukhavasi, Katyayani; Franzén, Oscar; Li, Li; Belbin, Gillian M.; Akers, Kristin L.; Shameer, Khader; Badgeley, Marcus A.; Johnson, Kipp W.; Readhead, Ben; Darrow, Bruce J.; Kenny, Eimear E.; Betsholtz, Christer; Ermel, Raili; Skogsberg, Josefin; Ruusalepp, Arno; Schadt, Eric E.; Dudley, Joel T.; Ren, Hongxia; Kovacic, Jason C.; Giannarelli, Chiara; Li, Shuyu D.; Björkegren, Johan L. M.; Chen, Rong; Pediatrics, IU School of MedicineBACKGROUND: Genetic loss-of-function variants (LoFs) associated with disease traits are increasingly recognized as critical evidence for the selection of therapeutic targets. We integrated the analysis of genetic and clinical data from 10,511 individuals in the Mount Sinai BioMe Biobank to identify genes with loss-of-function variants (LoFs) significantly associated with cardiovascular disease (CVD) traits, and used RNA-sequence data of seven metabolic and vascular tissues isolated from 600 CVD patients in the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) study for validation. We also carried out in vitro functional studies of several candidate genes, and in vivo studies of one gene. RESULTS: We identified LoFs in 433 genes significantly associated with at least one of 10 major CVD traits. Next, we used RNA-sequence data from the STARNET study to validate 115 of the 433 LoF harboring-genes in that their expression levels were concordantly associated with corresponding CVD traits. Together with the documented hepatic lipid-lowering gene, APOC3, the expression levels of six additional liver LoF-genes were positively associated with levels of plasma lipids in STARNET. Candidate LoF-genes were subjected to gene silencing in HepG2 cells with marked overall effects on cellular LDLR, levels of triglycerides and on secreted APOB100 and PCSK9. In addition, we identified novel LoFs in DGAT2 associated with lower plasma cholesterol and glucose levels in BioMe that were also confirmed in STARNET, and showed a selective DGAT2-inhibitor in C57BL/6 mice not only significantly lowered fasting glucose levels but also affected body weight. CONCLUSION: In sum, by integrating genetic and electronic medical record data, and leveraging one of the world's largest human RNA-sequence datasets (STARNET), we identified known and novel CVD-trait related genes that may serve as targets for CVD therapeutics and as such merit further investigation.