ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ratvasky, Stephen C."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Interligand communication in a metal mediated LL′CT system – a case study
    (RSC, 2021) Dille, Sara A.; Colston, Kyle J.; Ratvasky, Stephen C.; Pu, Jingzhi; Basu, Partha; Chemistry and Chemical Biology, School of Science
    A series of oxo-Mo(IV) complexes, [MoO(Dt2−)(Dt0)] (where Dt2− = benzene-1,2-dithiol (bdt), toluene-3,4-dithiol (tdt), quinoxaline-2,3-dithiol (qdt), or 3,6-dichloro-benzene-1,2-dithiol (bdtCl2); Dt0 = N,N′-dimethylpiperazine-2,3-dithione (Me2Dt0) or N,N′-diisopropylpiperazine-2,3-dithione (iPr2Dt0)), possessing a fully oxidized and a fully reduced dithiolene ligand have been synthesized and characterized. The assigned oxidation states of coordinated dithiolene ligands are supported with spectral and crystallographic data. The molecular structure of [MoO(tdt)(iPr2Dt0)] (6) demonstrates a large ligand fold angle of 62.6° along the S⋯S vector of the Dt0 ligand. The electronic structure of this system is probed by density functional theory (DFT) calculations. The HOMO is largely localized on the Dt2− ligand while virtual orbitals are mostly Mo and Dt0 in character. Modeling the electronic spectrum of 6 with time dependent (TD) DFT calculations attributes the intense low energy transition at ∼18 000 cm−1 to a ligand-to-ligand charge transfer (LL′CT). The electron density difference map (EDDM) for the low energy transition depicts the electron rich Dt2− ligand donating charge density to the redox-active orbitals of the electron deficient Dt0 ligand. Electronic communication between dithiolene ligands is facilitated by a Mo-monooxo center and distortion about its primary coordination sphere.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University