ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ransohoff, Richard M."

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer's Disease
    (2017-01) Jay, Taylor R.; Hirsch, Anna M.; Broihier, Margaret L.; Miller, Crystal M.; Neilson, Lee E.; Ransohoff, Richard M.; Lamb, Bruce T.; Landreth, Gary E.; Department of Medical and Molecular Genetics, School of Medicine
    Neuroinflammation is an important contributor to Alzheimer's disease (AD) pathogenesis, as underscored by the recent identification of immune-related genetic risk factors for AD, including coding variants in the gene TREM2 (triggering receptor expressed on myeloid cells 2). Understanding TREM2 function promises to provide important insights into how neuroinflammation contributes to AD pathology. However, studies so far have produced seemingly conflicting results, with reports that amyloid pathology can be both decreased and increased in TREM2-deficient AD mouse models. In this study, we unify these previous findings by demonstrating that TREM2 deficiency ameliorates amyloid pathology early, but exacerbates it late in disease progression in the APPPS1–21 mouse model of AD. We also demonstrate that TREM2 deficiency decreases plaque-associated myeloid cell accumulation by reducing cell proliferation, specifically late in pathology. In addition, TREM2 deficiency reduces myeloid cell internalization of amyloid throughout pathology, but decreases inflammation-related gene transcript levels selectively late in disease progression. Together, these results suggest that TREM2 plays distinct functional roles at different stages in AD pathology.
  • Loading...
    Thumbnail Image
    Item
    Laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model
    (BioMed Central, 2018-01-30) Katsumoto, Atsuko; Miranda, Aline S.; Butovsky, Oleg; Teixeira, Antônio L.; Ransohoff, Richard M.; Lamb, Bruce T.; Neurology, School of Medicine
    BACKGROUND: Traumatic brain injury (TBI) is a critical public health and socio-economic problem worldwide. A growing body of evidence supports the involvement of inflammatory events in TBI. It has been reported that resident microglia and infiltrating monocytes promote an inflammatory reaction that leads to neuronal death and eventually behavioral and cognitive impairment. Currently, there is no effective treatment for TBI and the development of new therapeutic strategies is a scientific goal of highest priority. Laquinimod, an orally administered neuroimmunomodulator initially developed for the treatment of multiple sclerosis, might be a promising neuroprotective therapy for TBI. Herein, we aim to investigate the hypothesis that laquinimod will reduce the central nervous system (CNS) damage caused by TBI. METHODS: To test our hypothesis, Ccr2rfp/+ Cx3cr1 gfp/+ mice were submitted to a moderate TBI induced by fluid percussion. Sham controls were submitted only to craniotomy. Mice were treated daily by oral gavage with laquinimod (25 mg/kg) 7 days before and 3 days after TBI. The brains of mice treated or not treated with laquinimod were collected at 3 and 120 days post injury, and brain morphological changes, axonal injury, and neurogenesis were evaluated by microscopy analysis. We also isolated microglia from infiltrating monocytes, and the expression of immune gene mRNAs were analyzed by employing a quantitative NanoString nCounter technique. RESULTS: Laquinimod prevented ventricle enlargement caused by TBI in the long term. Immunohistochemical analyses revealed decreased axonal damage and restored neurogenesis in the laquinimod-treated TBI group at early stage (3 days post injury). Notably, laquinimod inhibited the monocytes infiltration to the brain. Hierarchial clustering demonstrated that the microglial gene expression from the TBI group treated with laquinimod resembles the sham group more than the TBI-water control group. CONCLUSIONS: Administration of laquinimod reduced lesion volume and axonal damage and restored neurogenesis after TBI. Laquinimod might be a potential therapy strategy to improve TBI long-term prognosis.
  • Loading...
    Thumbnail Image
    Item
    Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling
    (Nature Research, 2019-06-17) Gunner, Georgia; Cheadle, Lucas; Johnson, Kasey M.; Ayata, Pinar; Badimon, Ana; Mondo, Erica; Nagy, M. Aurel; Liu, Liwang; Bemiller, Shane M.; Kim, Ki-Wook; Lira, Sergio A.; Lamb, Bruce T.; Tapper, Andrew R.; Ransohoff, Richard M.; Greenberg, Michael E.; Schaefer, Anne; Schafer, Dorothy P.; Psychiatry, School of Medicine
    Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1−/− and Cx3cl1−/− synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.
  • Loading...
    Thumbnail Image
    Item
    Traumatic brain injury in hTau model mice: Enhanced acute macrophage response and altered long-term recovery
    (Liebert, 2017) Kokiko-Cochran, Olga N.; Saber, Maha; Puntambekar, Shweta; Bemiller, Shane; Katsumoto, Atsuko; Lee, Yu-Shang; Bhaskar, Kiran; Ransohoff, Richard M.; Lamb, Bruce T.; Department of Medical and Molecular Genetics, School of Medicine
    TBI induces widespread neuroinflammation and accumulation of microtubule associated protein tau (MAPT) - two key pathological features of tauopathies. This study sought to characterize the microglial/macrophage response to TBI in genomic-based MAPT transgenic mice in a Mapt knockout background (called hTau). Two-month-old hTau and age-matched control male and female mice received a single lateral fluid percussion TBI or sham injury. Separate groups of mice were aged to an acute (3 days post-injury [DPI]) or chronic (135 DPI) post-injury time point. As judged by tissue immunostaining for macrophage markers, microglial/macrophage response to TBI was enhanced at 3 DPI in hTau mice compared to control TBI and sham mice. However, MAPT phosphorylation increased in hTau mice regardless of injury group. Flow cytometric analysis revealed distinct populations of microglia and macrophages within all groups at 135 DPI. Unexpectedly, microglial reactivity was significantly reduced in hTau TBI mice compared to all other groups. Instead, hTau TBI mice showed a persistent macrophage response. In addition, TBI enhanced MAPT pathology in the temporal cortex and hippocampus of hTau TBI mice compared to controls 135 DPI. A battery of behavioral test revealed that TBI in hTau mice resulted in compromised use of spatial search strategies to complete a water maze task despite lack of motor or visual deficits. Collectively, these data indicate that the presence of wild-type human tau alters the microglial/macrophage response to a single TBI, induces delayed, region-specific MAPT pathology, and alters cognitive recovery; however, the causal relationship between these events remains unclear. These results highlight the potential significance of communication between MAPT and microglia/macrophages following TBI and emphasize the role of neuroinflammation in post-injury recovery.
  • Loading...
    Thumbnail Image
    Item
    The Trem2 R47H variant confers loss-of-function-like phenotypes in Alzheimer's disease
    (BMC, 2018-06-01) Cheng-Hathaway, Paul J.; Reed-Geaghan, Erin G.; Jay, Taylor R.; Casali, Brad T.; Bemiller, Shane M.; Puntambekar, Shweta S.; von Saucken, Victoria E.; Williams, Roxanne Y.; Karlo, J. Colleen; Moutinho, Miguel; Xu, Guixiang; Ransohoff, Richard M.; Lamb, Bruce T.; Landreth, Gary E.; Anatomy and Cell Biology, School of Medicine
    BACKGROUND: The R47H variant of Triggering Receptor Expressed on Myeloid cells 2 (TREM2) confers greatly increased risk for Alzheimer's disease (AD), reflective of a central role for myeloid cells in neurodegeneration. Understanding how this variant confers AD risk promises to provide important insights into how myeloid cells contribute to AD pathogenesis and progression. METHODS: In order to investigate this mechanism, CRISPR/Cas9 was used to generate a mouse model of AD harboring one copy of the single nucleotide polymorphism (SNP) encoding the R47H variant in murine Trem2. TREM2 expression, myeloid cell responses to amyloid deposition, plaque burden, and neuritic dystrophy were assessed at 4 months of age. RESULTS: AD mice heterozygous for the Trem2 R47H allele exhibited reduced total Trem2 mRNA expression, reduced TREM2 expression around plaques, and reduced association of myeloid cells with plaques. These results were comparable to AD mice lacking one copy of Trem2. AD mice heterozygous for the Trem2 R47H allele also showed reduced myeloid cell responses to amyloid deposition, including a reduction in proliferation and a reduction in CD45 expression around plaques. Expression of the Trem2 R47H variant also reduced dense core plaque number but increased plaque-associated neuritic dystrophy. CONCLUSIONS: These data suggest that the AD-associated TREM2 R47H variant increases risk for AD by conferring a loss of TREM2 function and enhancing neuritic dystrophy around plaques.
  • Loading...
    Thumbnail Image
    Item
    Triggering receptor expressed on myeloid cells 2 deficiency exacerbates injury-induced inflammation in a mouse model of tauopathy
    (Frontiers Media, 2022-11-01) Katsumoto, Atsuko; Kokiko-Cochran, Olga N.; Bemiller, Shane M.; Xu, Guixiang; Ransohoff, Richard M.; Lamb, Bruce T.; Medical and Molecular Genetics, School of Medicine
    Traumatic brain injury (TBI) promotes several Alzheimer's disease-like pathological features, including microtubule-associated protein tau (MAPT) accumulation within neurons. Macrophage activation in the injured hTau mouse model of tauopathy raises the question whether there is a relationship between MAPT pathology and alterations in macrophage activation following TBI. Triggering receptor expressed on myeloid cells 2 (TREM2) is a critical regulator of microglia and macrophage phenotype, but its mechanisms on TBI remain unclear. To address the association with TREM2 in TBI and MAPT pathology, we studied TREM2 deficiency in hTau mice (hTau;Trem2-/- ) 3 (acute phase) and 120 (chronic phase) days after experimental TBI. At three days following injury, hTau;Trem2-/- mice exhibited reduced macrophage activation both in the cortex and hippocampus. However, to our surprise, hTau;Trem2-/- mice exposed to TBI augments macrophage accumulation in the corpus callosum and white matter near the site of tissue damage in a chronic phase, which results in exacerbated axonal injury, tau aggregation, and impaired neurogenesis. We further demonstrate that TREM2 deficiency in hTau injured mice promotes neuronal dystrophy in the white matter due to impaired phagocytosis of apoptotic cells. Remarkably, hTau;Trem2-/- exposed to TBI failed to restore blood-brain barrier integrity. These findings imply that TREM2 deficiency accelerates inflammation and neurodegeneration, accompanied by attenuated microglial phagocytosis and continuous blood-brain barrier (BBB) leakage, thus exacerbating tauopathy in hTau TBI mice.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University