- Browse by Author
Browsing by Author "Rangel-Barajas, Claudia"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Altered excitatory transmission in striatal neurons after chronic ethanol consumption in selectively bred crossed high alcohol-preferring mice(Elsevier, 2021) Rangel-Barajas, Claudia; Boehm, Stephen L., II.; Logrip, Marian L.; Psychology, School of ScienceGenetic predisposition to heavy drinking is a risk factor for alcohol misuse. We used selectively bred crossed high alcohol-preferring (cHAP) mice to study sex differences in alcohol drinking and its effect on glutamatergic activity in dorsolateral (DLS) and dorsomedial (DMS) striatum. We performed whole-cell patch-clamp recording in neurons from male and female cHAP mice with 5-week alcohol drinking history and alcohol-naïve controls. In DMS, alcohol-naïve males' neurons displayed lower cell capacitance and higher membrane resistance than females' neurons, both effects reversed by drinking. Conversely, in DLS neurons, drinking history increased capacitance only in males and changed membrane resistance only in females. Altered biophysical membrane properties were accompanied by disrupted glutamatergic transmission. Drinking history increased spontaneous excitatory postsynaptic current (sEPSC) amplitude in DMS and frequency in DLS female neurons, compared to alcohol-naïve females, without effect in males. Acute ethanol differentially impacted DMS and DLS neurons by sex and drinking history. In DMS, acute alcohol significantly increased sEPSC frequency only in neurons from alcohol-naïve females, an effect that disappeared after drinking history. In DLS, acute alcohol had opposing effects in males and females based on drinking history. Estrous cycle also impacted DMS and DLS neurons differently: sEPSC amplitudes were higher in DMS cells from drinking history than alcohol-naïve females, whereas estrous cycle, not drinking history, modified DLS firing rate. Our data show sex differences in cHAP ethanol consumption and neurophysiology, suggesting differential dysregulation of glutamatergic drive onto DMS and DLS after chronic ethanol consumption.Item Characterizing Molecular and Synaptic Signatures in mouse models of Late-Onset Alzheimer’s Disease Independent of Amyloid and Tau Pathology(bioRxiv, 2023-12-20) Kotredes, Kevin P.; Pandey, Ravi S.; Persohn, Scott; Elderidge, Kierra; Burton, Charles P.; Miner, Ethan W.; Haynes, Kathryn A.; Santos, Diogo Francisco S.; Williams, Sean-Paul; Heaton, Nicholas; Ingraham, Cynthia M.; Lloyd, Christopher; Garceau, Dylan; O’Rourke, Rita; Herrick, Sarah; Rangel-Barajas, Claudia; Maharjan, Surendra; Wang, Nian; Sasner, Michael; Lamb, Bruce T.; Territo, Paul R.; Sukoff Rizzo, Stacey J.; Carter, Gregory W.; Howell, Gareth R.; Oblak, Adrian L.; Medical and Molecular Genetics, School of MedicineIntroduction: MODEL-AD is creating and distributing novel mouse models with humanized, clinically relevant genetic risk factors to more accurately mimic LOAD than commonly used transgenic models. Methods: We created the LOAD2 model by combining APOE4, Trem2*R47H, and humanized amyloid-beta. Mice aged up to 24 months were subjected to either a control diet or a high-fat/high-sugar diet (LOAD2+HFD) from two months of age. We assessed disease-relevant outcomes, including in vivo imaging, biomarkers, multi-omics, neuropathology, and behavior. Results: By 18 months, LOAD2+HFD mice exhibited cortical neuron loss, elevated insoluble brain Aβ42, increased plasma NfL, and altered gene/protein expression related to lipid metabolism and synaptic function. In vivo imaging showed age-dependent reductions in brain region volume and neurovascular uncoupling. LOAD2+HFD mice also displayed deficits in acquiring touchscreen-based cognitive tasks. Discussion: Collectively the comprehensive characterization of LOAD2+HFD mice reveal this model as important for preclinical studies that target features of LOAD independent of amyloid and tau.Item Low-level developmental lead exposure does not predispose to adult alcohol self-administration, but does increase the risk of relapsing to alcohol seeking in mice: Contrasting role of GLT1 and xCT brain expression(Elsevier, 2020-12-15) Rangel-Barajas, Claudia; Coronel, Israel; Zhang, Yanping; Hernández, Maribel; Boehm, Stephen L., II; Psychology, School of ScienceLead (Pb) is a neurotoxic heavy metal pollutant. Despite the efforts to reduce Pb environmental exposure and to prevent Pb poisoning, exposure in human populations persists. Studies of adults with history of childhood lead exposure have consistently demonstrated cognitive impairments that have been associated with sustained glutamate signaling. Additionally, some clinical studies have also found correlations between Pb exposure and increased proclivity to drug addiction. Thus, here we sought to investigate if developmental Pb exposure can increase propensity to alcohol consumption and relapse using an alcohol self-administration paradigm. Because Pb exposure is associated with increased glutamatergic tone, we also studied the effects on the expression of synaptic and non-synaptic glutamate transporters in brain regions associated with drug addiction such as the nucleus accumbens (NAc), dorsomedial striatum (DMS), dorsolateral striatum (DLS), and medial prefrontal cortex (mPFC). We found that while developmental Pb exposure did not increase risk for alcohol self-administration, it did play a role in relapsing to alcohol. The effects were associated with differential expression of the glutamate transporter 1 (GLT1) and the glutamate/cystine antiporter (xCT). In the NAc and DLS the expression of GLT1 was found to be significantly reduced, while no changes were found in DMS or mPFC. Contrastingly, xCT was found to be upregulated in NAc but downregulated in DLS, with no changes in DMS or mPFC. Our data suggest that lead exposure is involved in relapse to alcohol seeking, an effect that could be associated with downregulation of GLT1 and xCT in the DLS.Item Sex-Specific Timelines for Adaptations of Prefrontal Parvalbumin Neurons in Response to Stress and Changes in Anxiety- and Depressive-Like Behaviors(Society for Neuroscience, 2023-03-02) Woodward, Emma; Rangel-Barajas, Claudia; Ringland, Amanda; Logrip, Marian L.; Coutellier, Laurence; Psychology, School of ScienceWomen are twice as likely as men to experience emotional dysregulation after stress, resulting in substantially higher psychopathology for equivalent lifetime stress exposure, yet the mechanisms underlying this vulnerability remain unknown. Studies suggest changes in medial prefrontal cortex (mPFC) activity as a potential contributor. Whether maladaptive changes in inhibitory interneurons participate in this process, and whether adaptations in response to stress differ between men and women, producing sex-specific changes in emotional behaviors and mPFC activity, remained undetermined. This study examined whether unpredictable chronic mild stress (UCMS) in mice differentially alters behavior and mPFC parvalbumin (PV) interneuron activity by sex, and whether the activity of these neurons drives sex-specific behavioral changes. Four weeks of UCMS increased anxiety-like and depressive-like behaviors associated with FosB activation in mPFC PV neurons, particularly in females. After 8 weeks of UCMS, both sexes displayed these behavioral and neural changes. Chemogenetic activation of PV neurons in UCMS-exposed and nonstressed males induced significant changes in anxiety-like behaviors. Importantly, patch-clamp electrophysiology demonstrated altered excitability and basic neural properties on the same timeline as the emergence of behavioral effects: changes in females after 4 weeks and in males after 8 weeks of UCMS. These findings show, for the first time, that sex-specific changes in the excitability of prefrontal PV neurons parallel the emergence of anxiety-like behavior, revealing a potential novel mechanism underlying the enhanced vulnerability of females to stress-induced psychopathology and supporting further investigation of this neuronal population to identify new therapeutic targets for stress disorders.