- Browse by Author
Browsing by Author "Ramsoondar, Jagdeece"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Expression of NeuGc on Pig Corneas and Its Potential Significance in Pig Corneal Xenotransplantation(Wolters Kluwer, 2016-01) Lee, Whayoung; Miyagawa, Yuko; Long, Cassandra; Ekser, Burcin; Walters, Eric; Ramsoondar, Jagdeece; Ayares, David; Tector, A. Joseph; Cooper, David K. C.; Hara, Hidetaka; Department of Surgery, IU School of MedicinePURPOSE: Pigs expressing neither galactose-α1,3-galactose (Gal) nor N-glycolylneuraminic acid (NeuGc) take xenotransplantation one step closer to the clinic. Our aims were (1) to document the lack of NeuGc expression on corneas and aortas and cultured endothelial cells [aortic endothelial cells (AECs); corneal (CECs)] of GTKO/NeuGcKO pigs, and (2) to investigate whether the absence of NeuGc reduced human antibody binding to the tissues and cells. METHODS: Wild-type (WT), GTKO, and GTKO/NeuGcKO pigs were used for the study. Human tissues and cultured cells were negative controls. Immunofluorescence staining was performed using anti-Gal and anti-NeuGc antibodies, and human IgM and IgG binding to tissues was determined. Flow cytometric analysis was used to determine Gal and NeuGc expression on cultured CECs and AECs and to measure human IgM/IgG binding to these cells. RESULTS: Both Gal and NeuGc were detected on WT pig corneas and aortas. Although GTKO pigs expressed NeuGc, neither humans nor GTKO/NeuGcKO pigs expressed Gal or NeuGc. Human IgM/IgG binding to corneas and aortas from GTKO and GTKO/NeuGcKO pigs was reduced compared with binding to WT pigs. Human antibody binding to GTKO/NeuGcKO AECs was significantly less than that to GTKO AECs, but there was no significant difference in binding between GTKO and GTKO/NeuGcKO CECs. CONCLUSIONS: The absence of NeuGc on GTKO aortic tissue and AECs is associated with reduced human antibody binding, and possibly will provide a better outcome in clinical xenotransplantation using vascularized organs. For clinical corneal xenotransplantation, the absence of NeuGc expression on GTKO/NeuGcKO pig corneas may not prove an advantage over GTKO corneas.Item The role of genetically engineered pigs in xenotransplantation research(Wiley, 2016-01) Cooper, David K.C.; Ekser, Burcin; Ramsoondar, Jagdeece; Phelps, Carol; Ayares, David; Department of Surgery, IU School of MedicineThere is a critical shortage in the number of deceased human organs that become available for the purposes of clinical transplantation. This problem might be resolved by the transplantation of organs from pigs genetically engineered to protect them from the human immune response. The pathobiological barriers to successful pig organ transplantation in primates include activation of the innate and adaptive immune systems, coagulation dysregulation and inflammation. Genetic engineering of the pig as an organ source has increased the survival of the transplanted pig heart, kidney, islet and corneal graft in non-human primates (NHPs) from minutes to months or occasionally years. Genetic engineering may also contribute to any physiological barriers that might be identified, as well as to reducing the risks of transfer of a potentially infectious micro-organism with the organ. There are now an estimated 40 or more genetic alterations that have been carried out in pigs, with some pigs expressing five or six manipulations. With the new technology now available, it will become increasingly common for a pig to express even more genetic manipulations, and these could be tested in the pig-to-NHP models to assess their efficacy and benefit. It is therefore likely that clinical trials of pig kidney, heart and islet transplantation will become feasible in the near future