- Browse by Author
Browsing by Author "Rajapakshe, Kimal I."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Integrated Molecular Characterization of Intraductal Papillary Mucinous Neoplasms: An NCI Cancer Moonshot Precancer Atlas Pilot Project(American Association for Cancer Research, 2023) Semaan, Alexander; Bernard, Vincent; Wong, Justin; Makino, Yuki; Swartzlander, Daniel B.; Rajapakshe, Kimal I.; Lee, Jaewon J.; Officer, Adam; Schmidt, Christian Max; Wu, Howard H.; Scaife, Courtney L.; Affolter, Kajsa E.; Nachmanson, Daniela; Firpo, Matthew A.; Yip-Schneider, Michele; Lowy, Andrew M.; Harismendy, Olivier; Sen, Subrata; Maitra, Anirban; Jakubek, Yasminka A.; Guerrero, Paola A.; Surgery, School of MedicineIntraductal papillary mucinous neoplasms (IPMN) are cystic precursor lesions to pancreatic ductal adenocarcinoma (PDAC). IPMNs undergo multistep progression from low-grade (LG) to high-grade (HG) dysplasia, culminating in invasive neoplasia. While patterns of IPMN progression have been analyzed using multiregion sequencing for somatic mutations, there is no integrated assessment of molecular events, including copy-number alterations (CNA) and transcriptional changes that accompany IPMN progression. We performed laser capture microdissection on surgically resected IPMNs of varying grades of histologic dysplasia obtained from 23 patients, followed by whole-exome and whole-transcriptome sequencing. Overall, HG IPMNs displayed a significantly greater aneuploidy score than LG lesions, with chromosome 1q amplification being associated with HG progression and with cases that harbored co-occurring PDAC. Furthermore, the combined assessment of single-nucleotide variants (SNV) and CNAs identified both linear and branched evolutionary trajectories, underscoring the heterogeneity in the progression of LG lesions to HG and PDAC. At the transcriptome level, upregulation of MYC-regulated targets and downregulation of transcripts associated with the MHC class I antigen presentation machinery as well as pathways related to glycosylation were a common feature of progression to HG. In addition, the established PDAC transcriptional subtypes (basal-like and classical) were readily apparent within IPMNs. Taken together, this work emphasizes the role of 1q copy-number amplification as a putative biomarker of high-risk IPMNs, underscores the importance of immune evasion even in noninvasive precursor lesions, and reinforces that evolutionary pathways in IPMNs are heterogenous, comprised of both SNV and CNA-driven events. Significance: Integrated molecular analysis of genomic and transcriptomic alterations in the multistep progression of IPMNs, which are bona fide precursors of pancreatic cancer, identifies features associated with progression of low-risk lesions to high-risk lesions and cancer, which might enable patient stratification and cancer interception strategies.Item Spatial Transcriptomics of Intraductal Papillary Mucinous Neoplasms of The Pancreas Identifies NKX6-2 as a Driver of Gastric Differentiation and Indolent Biological Potential(American Association for Cancer Research, 2023) Sans, Marta; Makino, Yuki; Min, Jimin; Rajapakshe, Kimal I.; Yip-Schneider, Michele; Schmidt, C. Max; Hurd, Mark W.; Burks, Jared K.; Gomez, Javier A.; Thege, Fredrik I.; Fahrmann, Johannes F.; Wolff, Robert A.; Kim, Michael P.; Guerrero, Paola A.; Maitra, Anirban; Surgery, School of MedicineIntraductal papillary mucinous neoplasms (IPMN) of the pancreas are bona fide precursor lesions of pancreatic ductal adenocarcinoma (PDAC). The most common subtype of IPMNs harbors a gastric foveolar-type epithelium, and these low-grade mucinous neoplasms are harbingers of IPMNs with high-grade dysplasia and cancer. The molecular underpinning of gastric differentiation in IPMNs is unknown, although identifying drivers of this indolent phenotype might enable opportunities for intercepting progression to high-grade IPMN and cancer. We conducted spatial transcriptomics on a cohort of IPMNs, followed by orthogonal and cross-species validation studies, which established the transcription factor NKX6-2 as a key determinant of gastric cell identity in low-grade IPMNs. Loss of NKX6-2 expression is a consistent feature of IPMN progression, while reexpression of Nkx6-2 in murine IPMN lines recapitulates the aforementioned gastric transcriptional program and glandular morphology. Our study identifies NKX6-2 as a previously unknown transcription factor driving indolent gastric differentiation in IPMN pathogenesis.