ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Rajagopal, Lakshmi"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Group B Streptococcus cpsE is required for serotype V capsule production and aids in biofilm formation and ascending infection of the reproductive tract during pregnancy
    (American Chemical Society, 2021) Noble, Kristen; Lu, Jacky; Guevara, Miriam A.; Doster, Ryan S.; Chambers, Schuyler A.; Rogers, Lisa M.; Moore, Rebecca E.; Spicer, Sabrina K.; Eastman, Alison J.; Francis, Jamisha D.; Manning, Shannon D.; Rajagopal, Lakshmi; Aronoff, David M.; Townsend, Steven D.; Gaddy, Jennifer A.; Pediatrics, School of Medicine
    Group B Streptococcus (GBS) is an encapsulated Gram-positive pathogen that causes ascending infections of the reproductive tract during pregnancy. The capsule of this organism is a critical virulence factor that has been implicated in a variety of cellular processes to promote pathogenesis. Primarily comprised of carbohydrates, the GBS capsule and its synthesis is driven by the capsule polysaccharide synthesis (cps) operon. The cpsE gene within this operon encodes a putative glycosyltransferase that is responsible for the transfer of a Glc-1-P from UDP-Glc to an undecaprenyl lipid molecule. We hypothesized that the cpsE gene product is important for GBS virulence and ascending infection during pregnancy. Our work demonstrates that a GBS cpsE mutant secretes fewer carbohydrates, has a reduced capsule, and forms less biofilm than the wild-type parental strain. We show that, compared to the parental strain, the ΔcpsE deletion mutant is more readily taken up by human placental macrophages and has a significantly attenuated ability to invade and proliferate in the mouse reproductive tract. Taken together, these results demonstrate that the cpsE gene product is an important virulence factor that aids in GBS colonization and invasion of the gravid reproductive tract.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University