- Browse by Author
Browsing by Author "Rahman, Md Ashiqur"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Electrochemical model based fault diagnosis of lithium ion battery(2015-08) Rahman, Md Ashiqur; Anwar, Sohel; Izadian, Afshin; Fu, YongzhuA gradient free function optimization technique, namely particle swarm optimization (PSO) algorithm, is utilized in parameter identification of the electrochemical model of a Lithium-Ion battery having a LiCoO2 chemistry. Battery electrochemical model parameters are subject to change under severe or abusive operating conditions resulting in, for example, Navy over-discharged battery, 24-hr over-discharged battery, and over-charged battery. It is important for a battery management system to have these parameters changes fully captured in a bank of battery models that can be used to monitor battery conditions in real time. In this work, PSO methodology has been used to identify four electrochemical model parameters that exhibit significant variations under severe operating conditions. The identified battery models were validated by comparing the model output voltage with the experimental output voltage for the stated operating conditions. These identified conditions of the battery were then used to monitor condition of the battery that can aid the battery management system (BMS) in improving overall performance. An adaptive estimation technique, namely multiple model adaptive estimation (MMAE) method, was implemented for this purpose. In this estimation algorithm, all the identified models were simulated for a battery current input profile extracted from the hybrid pulse power characterization (HPPC) cycle simulation of a hybrid electric vehicle (HEV). A partial differential algebraic equation (PDAE) observer was utilized to obtain the estimated voltage, which was used to generate the residuals. Analysis of these residuals through MMAE provided the probability of matching the current battery operating condition to that of one of the identified models. Simulation results show that the proposed model based method offered an accurate and effective fault diagnosis of the battery conditions. This type of fault diagnosis, which is based on the models capturing true physics of the battery electrochemistry, can lead to a more accurate and robust battery fault diagnosis and help BMS take appropriate steps to prevent battery operation in any of the stated severe or abusive conditions.Item Electrochemical Model-Based Condition Monitoring via Experimentally Identified Li-Ion Battery Model and HPPC(MDPI, 2017-08-25) Rahman, Md Ashiqur; Anwar, Sohel; Izadian, Afshin; Mechanical Engineering, School of Engineering and TechnologyElectrochemical model-based condition monitoring of a Li-Ion battery using an experimentally identified battery model and Hybrid Pulse Power Characterization (HPPC) cycle is presented in this paper. LiCoO2 cathode chemistry was chosen in this work due to its higher energy storage capabilities. Battery electrochemical model parameters are subject to change under severe or abusive operating conditions resulting in, for example, Navy over-discharged battery, 24 h over-discharged battery, and overcharged battery. Stated battery fault conditions can cause significant variations in a number of electrochemical battery model parameters from nominal values, and can be considered as separate models. Output error injection based partial differential algebraic equation (PDAE) observers have been used to generate the residual voltage signals in order to identify these abusive conditions. These residuals are then used in a Multiple Model Adaptive Estimation (MMAE) algorithm to detect the ongoing fault conditions of the battery. HPPC cycle simulated load profile based analysis shows that the proposed algorithm can detect and identify the stated fault conditions accurately using measured input current and terminal output voltage. The proposed model-based fault diagnosis can potentially improve the condition monitoring performance of a battery management system.